# adopted from # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py # and # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py # and # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py # # thanks! import torch import torch.nn as nn import einops from inspect import isfunction def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def nonlinearity(type='silu'): if type == 'silu': return nn.SiLU() elif type == 'leaky_relu': return nn.LeakyReLU() def normalization(channels, num_groups=32): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ return nn.GroupNorm(num_groups, channels) def default(val, d): if exists(val): return val return d() if isfunction(d) else d def exists(val): return val is not None def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def make_temporal_window(x, t, method): assert method in ['roll', 'prv', 'first'] if method == 'roll': m = einops.rearrange(x, '(b t) d c -> b t d c', t=t) l = torch.roll(m, shifts=1, dims=1) r = torch.roll(m, shifts=-1, dims=1) recon = torch.cat([l, m, r], dim=2) del l, m, r recon = einops.rearrange(recon, 'b t d c -> (b t) d c') return recon if method == 'prv': x = einops.rearrange(x, '(b t) d c -> b t d c', t=t) prv = torch.cat([x[:, :1], x[:, :-1]], dim=1) recon = torch.cat([x, prv], dim=2) del x, prv recon = einops.rearrange(recon, 'b t d c -> (b t) d c') return recon if method == 'first': x = einops.rearrange(x, '(b t) d c -> b t d c', t=t) prv = x[:, [0], :, :].repeat(1, t, 1, 1) recon = torch.cat([x, prv], dim=2) del x, prv recon = einops.rearrange(recon, 'b t d c -> (b t) d c') return recon def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: return torch.utils.checkpoint.checkpoint(func, *inputs, use_reentrant=False) else: return func(*inputs)