import inspect from dataclasses import dataclass from typing import Callable, List, Optional, Union import numpy as np import torch from diffusers import ( DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import BaseOutput from diffusers.utils.torch_utils import randn_tensor from einops import rearrange @dataclass class VideoPipelineOutput(BaseOutput): videos: Union[torch.Tensor, np.ndarray] class VideoPipeline(DiffusionPipeline): def __init__( self, vae, reference_net, diffusion_net, image_proj, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], ) -> None: super().__init__() self.register_modules( vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=scheduler, image_proj=image_proj, ) self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1) self.ref_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, ) @property def _execution_device(self): if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def prepare_latents( self, batch_size: int, # Number of videos to generate in parallel num_channels_latents: int, # Number of channels in the latents width: int, # Width of the video frame height: int, # Height of the video frame video_length: int, # Length of the video in frames dtype: torch.dtype, # Data type of the latents device: torch.device, # Device to store the latents on generator: Optional[torch.Generator] = None, # Random number generator for reproducibility latents: Optional[torch.Tensor] = None, # Pre-generated latents (optional) ): shape = ( batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler if hasattr(self.scheduler, "init_noise_sigma"): latents = latents * self.scheduler.init_noise_sigma return latents def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def decode_latents(self, latents): video_length = latents.shape[2] latents = 1 / 0.18215 * latents latents = rearrange(latents, "b c f h w -> (b f) c h w") video = [] for frame_idx in range(latents.shape[0]): video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) video = torch.cat(video) video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) video = (video / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 video = video.cpu().float().numpy() return video @torch.no_grad() def __call__( self, ref_image, face_emb, audio_tensor, width, height, video_length, num_inference_steps, guidance_scale, num_images_per_prompt=1, eta: float = 0.0, audio_emotion=None, emotion_class_num=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "tensor", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, ): # Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor device = self._execution_device do_classifier_free_guidance = guidance_scale > 1.0 # Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps batch_size = 1 # prepare clip image embeddings clip_image_embeds = face_emb clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype) encoder_hidden_states = self.image_proj(clip_image_embeds) uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds)) if do_classifier_free_guidance: encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0) num_channels_latents = self.diffusion_net.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, width, height, video_length, clip_image_embeds.dtype, device, generator, ) # Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # Prepare ref image latents ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w") ref_image_tensor = self.ref_image_processor.preprocess( ref_image_tensor, height=height, width=width ) # (bs, c, width, height) ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device) # To save memory on GPUs like RTX 4090, we encode each frame separately # ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean ref_image_latents = [] for frame_idx in range(ref_image_tensor.shape[0]): ref_image_latents.append(self.vae.encode(ref_image_tensor[frame_idx : frame_idx + 1]).latent_dist.mean) ref_image_latents = torch.cat(ref_image_latents, dim=0) ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w) if do_classifier_free_guidance: uncond_audio_tensor = torch.zeros_like(audio_tensor) audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0) audio_tensor = audio_tensor.to(dtype=self.diffusion_net.dtype, device=self.diffusion_net.device) # denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i in range(len(timesteps)): t = timesteps[i] # Forward reference image if i == 0: ref_features = self.reference_net( ref_image_latents.repeat((2 if do_classifier_free_guidance else 1), 1, 1, 1), torch.zeros_like(t), encoder_hidden_states=encoder_hidden_states, return_dict=False, ) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents if hasattr(self.scheduler, "scale_model_input"): latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) audio_emotion = torch.tensor(torch.mode(audio_emotion).values.item()).to( dtype=torch.int, device=self.diffusion_net.device ) if do_classifier_free_guidance: uncond_audio_emotion = torch.full_like(audio_emotion, emotion_class_num) audio_emotion = torch.cat( [uncond_audio_emotion.unsqueeze(0), audio_emotion.unsqueeze(0)], dim=0, ) uc_mask = ( torch.Tensor( [1] * batch_size * num_images_per_prompt * 16 + [0] * batch_size * num_images_per_prompt * 16 ) .to(device) .bool() ) else: uc_mask = None noise_pred = self.diffusion_net( latent_model_input, ref_features, t, encoder_hidden_states=encoder_hidden_states, audio_embedding=audio_tensor, audio_emotion=audio_emotion, uc_mask=uc_mask, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0: progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # Post-processing images = self.decode_latents(latents) # (b, c, f, h, w) # Convert to tensor if output_type == "tensor": images = torch.from_numpy(images) if not return_dict: return images return VideoPipelineOutput(videos=images)