from langchain.embeddings.openai import OpenAIEmbeddings from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from gradio import gradio as gr from langchain.chat_models import ChatOpenAI #from langchain.memory import ConversationBufferMemor from langchain.schema import AIMessage, HumanMessage from langchain import PromptTemplate, LLMChain from langchain.llms import TextGen from langchain.cache import InMemoryCache import os OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') # 嵌入模型 #embeddings = OpenAIEmbeddings() embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en") # 加载数据 #docsearch = FAISS.from_texts(texts, embeddings) docsearch = FAISS.load_local("./faiss_index", embeddings) chain = load_qa_chain(OpenAI(temperature=0,model_name="gpt-3.5-turbo", verbose=True), chain_type="stuff",verbose=True) prompt = "您是回答所有ANSYS软件使用查询的得力助手,如果所问的内容不在范围内,请回答“您提的问题不在本知识库内,请重新提问”,所有问题必需用中文回答" def predict(message, history): history_openai_format = [] for human, assistant in history: history_openai_format.append({"role": "system", "content": prompt }) history_openai_format.append({"role": "user", "content": human }) history_openai_format.append({"role": "assistant", "content":assistant}) history_openai_format.append({"role": "user", "content": message}) docs = docsearch.similarity_search(message) response = chain.run(input_documents=docs, question=message) partial_message = "" for chunk in response: if len(chunk[0]) != 0: time.sleep(0.1) partial_message = partial_message + chunk[0] yield partial_message langchain.llm_cache = InMemoryCache() gr.ChatInterface(predict, textbox=gr.Textbox(placeholder="请输入您的问题", container=False, scale=7), title="欢迎使用ANSYS软件AI机器人", examples=["你是谁?", "请介绍一下Fluent 软件的用户界面说明", "请用关于春天写一首100字的诗","数学题:小红有3元钱,小红买了2斤香蕉,香蕉的价格是每斤1元。问小红一共花了多少钱?","请用表格做一份学生课程表"], description="🦊请避免输入有违公序良俗的问题,模型可能无法回答不合适的问题🐇",).queue().launch()