#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pickle import sys import subprocess import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download from transformers import pipeline sys.path.append('.') sys.path.append('./Time_TravelRephotography') from argparse import Namespace #from projector import ( # ProjectorArguments, # main, #) sys.path.insert(0, 'StyleGAN-Human') TITLE = 'Time-TravelRephotography' DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography. ''' ARTICLE = '
visitor badge
' TOKEN = "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" pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") def load_model(file_name: str, path:str,device: torch.device) -> nn.Module: path = hf_hub_download(f'{path}', f'{file_name}', use_auth_token=TOKEN) with open(path, 'rb') as f: model = torch.load(f) model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label, force_fp32=True) return model def predict(text): return pipe(text)[0]["translation_text"] def main(): #torch.cuda.init() #if torch.cuda.is_initialized(): # ini = "True1" #else: # ini = "False1" if torch.cuda.is_available(): result = "True2" else: result = "False2" #load_model("stylegan2-ffhq-config-f","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f") result = subprocess.check_output(['nvidia-smi']) iface = gr.Interface( fn=predict, inputs='text', outputs='text', examples=[[f'{result}']] ) iface.launch() if __name__ == '__main__': main()