import math import random import functools import operator import torch from torch import nn from torch.nn import functional as F from torch.autograd import Function from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix from model import ( ModulatedConv2d, StyledConv, ConstantInput, PixelNorm, Upsample, Downsample, Blur, EqualLinear, ConvLayer, ) def get_haar_wavelet(in_channels): haar_wav_l = 1 / (2 ** 0.5) * torch.ones(1, 2) haar_wav_h = 1 / (2 ** 0.5) * torch.ones(1, 2) haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0] haar_wav_ll = haar_wav_l.T * haar_wav_l haar_wav_lh = haar_wav_h.T * haar_wav_l haar_wav_hl = haar_wav_l.T * haar_wav_h haar_wav_hh = haar_wav_h.T * haar_wav_h return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh def dwt_init(x): x01 = x[:, :, 0::2, :] / 2 x02 = x[:, :, 1::2, :] / 2 x1 = x01[:, :, :, 0::2] x2 = x02[:, :, :, 0::2] x3 = x01[:, :, :, 1::2] x4 = x02[:, :, :, 1::2] x_LL = x1 + x2 + x3 + x4 x_HL = -x1 - x2 + x3 + x4 x_LH = -x1 + x2 - x3 + x4 x_HH = x1 - x2 - x3 + x4 return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) def iwt_init(x): r = 2 in_batch, in_channel, in_height, in_width = x.size() # print([in_batch, in_channel, in_height, in_width]) out_batch, out_channel, out_height, out_width = ( in_batch, int(in_channel / (r ** 2)), r * in_height, r * in_width, ) x1 = x[:, 0:out_channel, :, :] / 2 x2 = x[:, out_channel : out_channel * 2, :, :] / 2 x3 = x[:, out_channel * 2 : out_channel * 3, :, :] / 2 x4 = x[:, out_channel * 3 : out_channel * 4, :, :] / 2 h = torch.zeros([out_batch, out_channel, out_height, out_width]).float().cuda() h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4 h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4 h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4 h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4 return h class HaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer("ll", ll) self.register_buffer("lh", lh) self.register_buffer("hl", hl) self.register_buffer("hh", hh) def forward(self, input): ll = upfirdn2d(input, self.ll, down=2) lh = upfirdn2d(input, self.lh, down=2) hl = upfirdn2d(input, self.hl, down=2) hh = upfirdn2d(input, self.hh, down=2) return torch.cat((ll, lh, hl, hh), 1) class InverseHaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer("ll", ll) self.register_buffer("lh", -lh) self.register_buffer("hl", -hl) self.register_buffer("hh", hh) def forward(self, input): ll, lh, hl, hh = input.chunk(4, 1) ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0)) lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0)) hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0)) hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0)) return ll + lh + hl + hh class ToRGB(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.iwt = InverseHaarTransform(3) self.upsample = Upsample(blur_kernel) self.dwt = HaarTransform(3) self.conv = ModulatedConv2d(in_channel, 3 * 4, 1, style_dim, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, 3 * 4, 1, 1)) def forward(self, input, style, skip=None): out = self.conv(input, style) out = out + self.bias if skip is not None: skip = self.iwt(skip) skip = self.upsample(skip) skip = self.dwt(skip) out = out + skip return out class Generator(nn.Module): def __init__( self, size, style_dim, n_mlp, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, ): super().__init__() self.size = size self.style_dim = style_dim layers = [PixelNorm()] for i in range(n_mlp): layers.append( EqualLinear( style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" ) ) self.style = nn.Sequential(*layers) self.channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv( self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel ) self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) self.log_size = int(math.log(size, 2)) - 1 self.num_layers = (self.log_size - 2) * 2 + 1 self.convs = nn.ModuleList() self.upsamples = nn.ModuleList() self.to_rgbs = nn.ModuleList() self.noises = nn.Module() in_channel = self.channels[4] for layer_idx in range(self.num_layers): res = (layer_idx + 5) // 2 shape = [1, 1, 2 ** res, 2 ** res] self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape)) for i in range(3, self.log_size + 1): out_channel = self.channels[2 ** i] self.convs.append( StyledConv( in_channel, out_channel, 3, style_dim, upsample=True, blur_kernel=blur_kernel, ) ) self.convs.append( StyledConv( out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel ) ) self.to_rgbs.append(ToRGB(out_channel, style_dim)) in_channel = out_channel self.iwt = InverseHaarTransform(3) self.n_latent = self.log_size * 2 - 2 def make_noise(self): device = self.input.input.device noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] for i in range(3, self.log_size + 1): for _ in range(2): noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) return noises def mean_latent(self, n_latent): latent_in = torch.randn( n_latent, self.style_dim, device=self.input.input.device ) latent = self.style(latent_in).mean(0, keepdim=True) return latent def get_latent(self, input): return self.style(input) def forward( self, styles, return_latents=False, inject_index=None, truncation=1, truncation_latent=None, input_is_latent=False, noise=None, randomize_noise=True, ): if not input_is_latent: styles = [self.style(s) for s in styles] if noise is None: if randomize_noise: noise = [None] * self.num_layers else: noise = [ getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) ] if truncation < 1: style_t = [] for style in styles: style_t.append( truncation_latent + truncation * (style - truncation_latent) ) styles = style_t if len(styles) < 2: inject_index = self.n_latent if styles[0].ndim < 3: latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) else: latent = styles[0] else: if inject_index is None: inject_index = random.randint(1, self.n_latent - 1) latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) latent = torch.cat([latent, latent2], 1) out = self.input(latent) out = self.conv1(out, latent[:, 0], noise=noise[0]) skip = self.to_rgb1(out, latent[:, 1]) i = 1 for conv1, conv2, noise1, noise2, to_rgb in zip( self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs ): out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) i += 2 image = self.iwt(skip) if return_latents: return image, latent else: return image, None class ConvBlock(nn.Module): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): super().__init__() self.conv1 = ConvLayer(in_channel, in_channel, 3) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) def forward(self, input): out = self.conv1(input) out = self.conv2(out) return out class FromRGB(nn.Module): def __init__(self, out_channel, downsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() self.downsample = downsample if downsample: self.iwt = InverseHaarTransform(3) self.downsample = Downsample(blur_kernel) self.dwt = HaarTransform(3) self.conv = ConvLayer(3 * 4, out_channel, 3) def forward(self, input, skip=None): if self.downsample: input = self.iwt(input) input = self.downsample(input) input = self.dwt(input) out = self.conv(input) if skip is not None: out = out + skip return input, out class Discriminator(nn.Module): def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): super().__init__() channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } self.dwt = HaarTransform(3) self.from_rgbs = nn.ModuleList() self.convs = nn.ModuleList() log_size = int(math.log(size, 2)) - 1 in_channel = channels[size] for i in range(log_size, 2, -1): out_channel = channels[2 ** (i - 1)] self.from_rgbs.append(FromRGB(in_channel, downsample=i != log_size)) self.convs.append(ConvBlock(in_channel, out_channel, blur_kernel)) in_channel = out_channel self.from_rgbs.append(FromRGB(channels[4])) self.stddev_group = 4 self.stddev_feat = 1 self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) self.final_linear = nn.Sequential( EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"), EqualLinear(channels[4], 1), ) def forward(self, input): input = self.dwt(input) out = None for from_rgb, conv in zip(self.from_rgbs, self.convs): input, out = from_rgb(input, out) out = conv(out) _, out = self.from_rgbs[-1](input, out) batch, channel, height, width = out.shape group = min(batch, self.stddev_group) stddev = out.view( group, -1, self.stddev_feat, channel // self.stddev_feat, height, width ) stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) stddev = stddev.repeat(group, 1, height, width) out = torch.cat([out, stddev], 1) out = self.final_conv(out) out = out.view(batch, -1) out = self.final_linear(out) return out