import argparse from io import BytesIO import multiprocessing from functools import partial from PIL import Image import lmdb from tqdm import tqdm from torchvision import datasets from torchvision.transforms import functional as trans_fn def resize_and_convert(img, size, resample, quality=100): img = trans_fn.resize(img, size, resample) img = trans_fn.center_crop(img, size) buffer = BytesIO() img.save(buffer, format="jpeg", quality=quality) val = buffer.getvalue() return val def resize_multiple( img, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS, quality=100 ): imgs = [] for size in sizes: imgs.append(resize_and_convert(img, size, resample, quality)) return imgs def resize_worker(img_file, sizes, resample): i, file = img_file img = Image.open(file) img = img.convert("RGB") out = resize_multiple(img, sizes=sizes, resample=resample) return i, out def prepare( env, dataset, n_worker, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS ): resize_fn = partial(resize_worker, sizes=sizes, resample=resample) files = sorted(dataset.imgs, key=lambda x: x[0]) files = [(i, file) for i, (file, label) in enumerate(files)] total = 0 with multiprocessing.Pool(n_worker) as pool: for i, imgs in tqdm(pool.imap_unordered(resize_fn, files)): for size, img in zip(sizes, imgs): key = f"{size}-{str(i).zfill(5)}".encode("utf-8") with env.begin(write=True) as txn: txn.put(key, img) total += 1 with env.begin(write=True) as txn: txn.put("length".encode("utf-8"), str(total).encode("utf-8")) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Preprocess images for model training") parser.add_argument("--out", type=str, help="filename of the result lmdb dataset") parser.add_argument( "--size", type=str, default="128,256,512,1024", help="resolutions of images for the dataset", ) parser.add_argument( "--n_worker", type=int, default=8, help="number of workers for preparing dataset", ) parser.add_argument( "--resample", type=str, default="lanczos", help="resampling methods for resizing images", ) parser.add_argument("path", type=str, help="path to the image dataset") args = parser.parse_args() resample_map = {"lanczos": Image.LANCZOS, "bilinear": Image.BILINEAR} resample = resample_map[args.resample] sizes = [int(s.strip()) for s in args.size.split(",")] print(f"Make dataset of image sizes:", ", ".join(str(s) for s in sizes)) imgset = datasets.ImageFolder(args.path) with lmdb.open(args.out, map_size=1024 ** 4, readahead=False) as env: prepare(env, imgset, args.n_worker, sizes=sizes, resample=resample)