import argparse import pickle import os import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader from torchvision import transforms from torchvision.models import inception_v3, Inception3 import numpy as np from tqdm import tqdm from inception import InceptionV3 from dataset import MultiResolutionDataset class Inception3Feature(Inception3): def forward(self, x): if x.shape[2] != 299 or x.shape[3] != 299: x = F.interpolate(x, size=(299, 299), mode="bilinear", align_corners=True) x = self.Conv2d_1a_3x3(x) # 299 x 299 x 3 x = self.Conv2d_2a_3x3(x) # 149 x 149 x 32 x = self.Conv2d_2b_3x3(x) # 147 x 147 x 32 x = F.max_pool2d(x, kernel_size=3, stride=2) # 147 x 147 x 64 x = self.Conv2d_3b_1x1(x) # 73 x 73 x 64 x = self.Conv2d_4a_3x3(x) # 73 x 73 x 80 x = F.max_pool2d(x, kernel_size=3, stride=2) # 71 x 71 x 192 x = self.Mixed_5b(x) # 35 x 35 x 192 x = self.Mixed_5c(x) # 35 x 35 x 256 x = self.Mixed_5d(x) # 35 x 35 x 288 x = self.Mixed_6a(x) # 35 x 35 x 288 x = self.Mixed_6b(x) # 17 x 17 x 768 x = self.Mixed_6c(x) # 17 x 17 x 768 x = self.Mixed_6d(x) # 17 x 17 x 768 x = self.Mixed_6e(x) # 17 x 17 x 768 x = self.Mixed_7a(x) # 17 x 17 x 768 x = self.Mixed_7b(x) # 8 x 8 x 1280 x = self.Mixed_7c(x) # 8 x 8 x 2048 x = F.avg_pool2d(x, kernel_size=8) # 8 x 8 x 2048 return x.view(x.shape[0], x.shape[1]) # 1 x 1 x 2048 def load_patched_inception_v3(): # inception = inception_v3(pretrained=True) # inception_feat = Inception3Feature() # inception_feat.load_state_dict(inception.state_dict()) inception_feat = InceptionV3([3], normalize_input=False) return inception_feat @torch.no_grad() def extract_features(loader, inception, device): pbar = tqdm(loader) feature_list = [] for img in pbar: img = img.to(device) feature = inception(img)[0].view(img.shape[0], -1) feature_list.append(feature.to("cpu")) features = torch.cat(feature_list, 0) return features if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") parser = argparse.ArgumentParser( description="Calculate Inception v3 features for datasets" ) parser.add_argument( "--size", type=int, default=256, help="image sizes used for embedding calculation", ) parser.add_argument( "--batch", default=64, type=int, help="batch size for inception networks" ) parser.add_argument( "--n_sample", type=int, default=50000, help="number of samples used for embedding calculation", ) parser.add_argument( "--flip", action="store_true", help="apply random flipping to real images" ) parser.add_argument("path", metavar="PATH", help="path to datset lmdb file") args = parser.parse_args() inception = load_patched_inception_v3() inception = nn.DataParallel(inception).eval().to(device) transform = transforms.Compose( [ transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ] ) dset = MultiResolutionDataset(args.path, transform=transform, resolution=args.size) loader = DataLoader(dset, batch_size=args.batch, num_workers=4) features = extract_features(loader, inception, device).numpy() features = features[: args.n_sample] print(f"extracted {features.shape[0]} features") mean = np.mean(features, 0) cov = np.cov(features, rowvar=False) name = os.path.splitext(os.path.basename(args.path))[0] with open(f"inception_{name}.pkl", "wb") as f: pickle.dump({"mean": mean, "cov": cov, "size": args.size, "path": args.path}, f)