#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pickle import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download from transformers import pipeline sys.path.append('.') sys.path.append('./Time_TravelRephotography') from argparse import Namespace #from projector import ( # ProjectorArguments, # main, #) sys.path.insert(0, 'StyleGAN-Human') TITLE = 'Time-TravelRephotography' DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography. ''' ARTICLE = '
visitor badge
' TOKEN = "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" pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") def load_model(file_name: str, path:str,device: torch.device) -> nn.Module: path = hf_hub_download(f'{path}', f'{file_name}', use_auth_token=TOKEN) with open(path, 'rb') as f: model = torch.load(f) model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label, force_fp32=True) return model def predict(text): return pipe(text)[0]["translation_text"] def main(): if torch.cuda.is_available(): result = "True" else: result = "False" #load_model("stylegan2-ffhq-config-f","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f") iface = gr.Interface( fn=predict, inputs='text', outputs='text', examples=[[result]] ) iface.launch() if __name__ == '__main__': main()