import argparse import json import os from os.path import join as pjoin import sys import bz2 import numpy as np import cv2 from tqdm import tqdm from tensorflow.keras.utils import get_file from utils.ffhq_dataset.face_alignment import image_align from utils.ffhq_dataset.landmarks_detector import LandmarksDetector LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2' def unpack_bz2(src_path): data = bz2.BZ2File(src_path).read() dst_path = src_path[:-4] with open(dst_path, 'wb') as fp: fp.write(data) return dst_path class SizePathMap(dict): """{size: {aligned_face_path0, aligned_face_path1, ...}, ...}""" def add_item(self, size, path): if size not in self: self[size] = set() self[size].add(path) def get_sizes(self): sizes = [] for key, paths in self.items(): sizes.extend([key,]*len(paths)) return sizes def serialize(self): result = {} for key, paths in self.items(): result[key] = list(paths) return result def main(args): landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2', LANDMARKS_MODEL_URL, cache_subdir='temp')) landmarks_detector = LandmarksDetector(landmarks_model_path) face_sizes = SizePathMap() raw_img_dir = args.raw_image_dir img_names = [n for n in os.listdir(raw_img_dir) if os.path.isfile(pjoin(raw_img_dir, n))] aligned_image_dir = args.aligned_image_dir os.makedirs(aligned_image_dir, exist_ok=True) pbar = tqdm(img_names) for img_name in pbar: pbar.set_description(img_name) if os.path.splitext(img_name)[-1] == '.txt': continue raw_img_path = os.path.join(raw_img_dir, img_name) try: for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1): face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i) aligned_face_path = os.path.join(aligned_image_dir, face_img_name) face_size = image_align( raw_img_path, aligned_face_path, face_landmarks, resize=args.resize ) face_sizes.add_item(face_size, aligned_face_path) pbar.set_description(f"{img_name}: {face_size}") if args.draw: visual = LandmarksDetector.draw(cv2.imread(raw_img_path), face_landmarks) cv2.imwrite( pjoin(args.aligned_image_dir, os.path.splitext(face_img_name)[0] + "_landmarks.png"), visual ) except Exception as e: print('[Error]', e, 'error happened when processing', raw_img_path) print(args.raw_image_dir, ':') sizes = face_sizes.get_sizes() results = { 'mean_size': np.mean(sizes), 'num_faces_detected': len(sizes), 'num_images': len(img_names), 'sizes': sizes, 'size_path_dict': face_sizes.serialize(), } print('\t', results) if args.out_stats is not None: os.makedirs(os.path.dirname(args.out_stats), exist_ok=True) with open(out_stats, 'w') as f: json.dump(results, f) def parse_args(args=None, namespace=None): parser = argparse.ArgumentParser(description=""" Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step python align_images.py /raw_images /aligned_images """ ) parser.add_argument('raw_image_dir') parser.add_argument('aligned_image_dir') parser.add_argument('--resize', help="True if want to resize to 1024", action='store_true') parser.add_argument('--draw', help="True if want to visualize landmarks", action='store_true') parser.add_argument('--out_stats', help="output_fn for statistics of faces", default=None) return parser.parse_args(args=args, namespace=namespace) if __name__ == "__main__": main(parse_args())