#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pickle import sys import subprocess from matplotlib import pyplot as plt import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download from transformers import pipeline sys.path.append('.') sys.path.append('./Time_TravelRephotography') from utils import torch_helpers as th from argparse import Namespace from projector import ( ProjectorArguments, main, create_generator, make_image, ) sys.path.insert(0, 'StyleGAN-Human') input_path = '' spectral_sensitivity = 'b' TITLE = 'Time-TravelRephotography' DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography. ''' ARTICLE = '
visitor badge
' TOKEN = "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" pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') return parser.parse_args() def load_model(file_name: str, path:str,device: torch.device) -> nn.Module: path = hf_hub_download(f'{path}', f'{file_name}', use_auth_token=TOKEN) with open(path, 'rb') as f: model = torch.load(f) model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label, force_fp32=True) return model #def image_create(input_img): def greet(name): return "Hello " + name + "!" def main(): #torch.cuda.init() #if torch.cuda.is_initialized(): # ini = "True1" #else: # ini = "False1" #result = subprocess.check_output(['nvidia-smi']) #load_model("stylegan2-ffhq-config-f","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f",device) args = ProjectorArguments().parse( args=[str(input_path)], namespace=Namespace( spectral_sensitivity=spectral_sensitivity, encoder_ckpt=f"checkpoint/encoder/checkpoint_{spectral_sensitivity}.pt", encoder_name=spectral_sensitivity, #gaussian=gaussian_radius, log_visual_freq=1000, input='text', )) device = th.device() generator = create_generator("stylegan2-ffhq-config-f.pt","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f",args, device) latent = torch.randn((1, 512), device=device) img_out, _, _ = generator([latent]) imgs_arr = make_image(img_out) #iface = gr.Interface( #fn=image_create, #inputs='text', #gr.outputs.Image(type='numpy', label='Output'), #title=TITLE, #description=DESCRIPTION, #article=ARTICLE, #theme=args.theme, #allow_flagging=args.allow_flagging, #live=args.live, #) #iface.launch( #enable_queue=args.enable_queue, #server_port=args.port, #share=args.share, #) #demo = gr.Interface(fn=image_create, inputs="text", outputs="image") #demo.launch() plt.figure(figsize=(10, 10)) plt.imshow(imgs_arr[0]) plt.show() if __name__ == '__main__': main()