#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pickle import sys import gradio as gr import numpy as np import torch import torch_utils import torch.nn as nn from huggingface_hub import hf_hub_download sys.path.insert(0, 'StyleGAN-Human') TITLE = 'StyleGAN-Human' DESCRIPTION = '''This is an unofficial demo for https://github.com/stylegan-human/StyleGAN-Human. Expected execution time on Hugging Face Spaces: 0.8s Related App: [StyleGAN-Human (Interpolation)](https://huggingface.co/spaces/hysts/StyleGAN-Human-Interpolation) ''' ARTICLE = '
visitor badge
' TOKEN = "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" def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') return parser.parse_args() def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn( 1, z_dim)).to(device).float() @torch.inference_mode() def generate_image(seed: int, truncation_psi: float, model: nn.Module, device: torch.device) -> np.ndarray: seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(model.z_dim, seed, device) label = torch.zeros([1, model.c_dim], device=device) out = model(z, label, truncation_psi=truncation_psi, force_fp32=True) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() def load_model(path:str, file_name: str, device: torch.device) -> nn.Module: path = hf_hub_download(f'{path}', f'{file_name}', use_auth_token=TOKEN) with open(path, 'rb') as f: model = torch.load(f) model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label, force_fp32=True) return model def main(): args = parse_args() device = torch.device(args.device) model = load_model('feng2022/Time-TravelRephotography_e4e_ffhq_encode','e4e_ffhq_encode.pt', device) func = functools.partial(generate_image, model=model, device=device) func = functools.update_wrapper(func, generate_image) gr.Interface( func, [ gr.inputs.Number(default=0, label='Seed'), gr.inputs.Slider( 0, 2, step=0.05, default=0.7, label='Truncation psi'), ], gr.outputs.Image(type='numpy', label='Output'), title=TITLE, description=DESCRIPTION, article=ARTICLE, theme=args.theme, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()