import argparse import os import sys import pickle import math import torch import numpy as np from torchvision import utils from model import Generator, Discriminator def convert_modconv(vars, source_name, target_name, flip=False): weight = vars[source_name + "/weight"].value().eval() mod_weight = vars[source_name + "/mod_weight"].value().eval() mod_bias = vars[source_name + "/mod_bias"].value().eval() noise = vars[source_name + "/noise_strength"].value().eval() bias = vars[source_name + "/bias"].value().eval() dic = { "conv.weight": np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), "conv.modulation.weight": mod_weight.transpose((1, 0)), "conv.modulation.bias": mod_bias + 1, "noise.weight": np.array([noise]), "activate.bias": bias, } dic_torch = {} for k, v in dic.items(): dic_torch[target_name + "." + k] = torch.from_numpy(v) if flip: dic_torch[target_name + ".conv.weight"] = torch.flip( dic_torch[target_name + ".conv.weight"], [3, 4] ) return dic_torch def convert_conv(vars, source_name, target_name, bias=True, start=0): weight = vars[source_name + "/weight"].value().eval() dic = {"weight": weight.transpose((3, 2, 0, 1))} if bias: dic["bias"] = vars[source_name + "/bias"].value().eval() dic_torch = {} dic_torch[target_name + f".{start}.weight"] = torch.from_numpy(dic["weight"]) if bias: dic_torch[target_name + f".{start + 1}.bias"] = torch.from_numpy(dic["bias"]) return dic_torch def convert_torgb(vars, source_name, target_name): weight = vars[source_name + "/weight"].value().eval() mod_weight = vars[source_name + "/mod_weight"].value().eval() mod_bias = vars[source_name + "/mod_bias"].value().eval() bias = vars[source_name + "/bias"].value().eval() dic = { "conv.weight": np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), "conv.modulation.weight": mod_weight.transpose((1, 0)), "conv.modulation.bias": mod_bias + 1, "bias": bias.reshape((1, 3, 1, 1)), } dic_torch = {} for k, v in dic.items(): dic_torch[target_name + "." + k] = torch.from_numpy(v) return dic_torch def convert_dense(vars, source_name, target_name): weight = vars[source_name + "/weight"].value().eval() bias = vars[source_name + "/bias"].value().eval() dic = {"weight": weight.transpose((1, 0)), "bias": bias} dic_torch = {} for k, v in dic.items(): dic_torch[target_name + "." + k] = torch.from_numpy(v) return dic_torch def update(state_dict, new): for k, v in new.items(): if k not in state_dict: raise KeyError(k + " is not found") if v.shape != state_dict[k].shape: raise ValueError(f"Shape mismatch: {v.shape} vs {state_dict[k].shape}") state_dict[k] = v def discriminator_fill_statedict(statedict, vars, size): log_size = int(math.log(size, 2)) update(statedict, convert_conv(vars, f"{size}x{size}/FromRGB", "convs.0")) conv_i = 1 for i in range(log_size - 2, 0, -1): reso = 4 * 2 ** i update( statedict, convert_conv(vars, f"{reso}x{reso}/Conv0", f"convs.{conv_i}.conv1"), ) update( statedict, convert_conv( vars, f"{reso}x{reso}/Conv1_down", f"convs.{conv_i}.conv2", start=1 ), ) update( statedict, convert_conv( vars, f"{reso}x{reso}/Skip", f"convs.{conv_i}.skip", start=1, bias=False ), ) conv_i += 1 update(statedict, convert_conv(vars, f"4x4/Conv", "final_conv")) update(statedict, convert_dense(vars, f"4x4/Dense0", "final_linear.0")) update(statedict, convert_dense(vars, f"Output", "final_linear.1")) return statedict def fill_statedict(state_dict, vars, size, n_mlp): log_size = int(math.log(size, 2)) for i in range(n_mlp): update(state_dict, convert_dense(vars, f"G_mapping/Dense{i}", f"style.{i + 1}")) update( state_dict, { "input.input": torch.from_numpy( vars["G_synthesis/4x4/Const/const"].value().eval() ) }, ) update(state_dict, convert_torgb(vars, "G_synthesis/4x4/ToRGB", "to_rgb1")) for i in range(log_size - 2): reso = 4 * 2 ** (i + 1) update( state_dict, convert_torgb(vars, f"G_synthesis/{reso}x{reso}/ToRGB", f"to_rgbs.{i}"), ) update(state_dict, convert_modconv(vars, "G_synthesis/4x4/Conv", "conv1")) conv_i = 0 for i in range(log_size - 2): reso = 4 * 2 ** (i + 1) update( state_dict, convert_modconv( vars, f"G_synthesis/{reso}x{reso}/Conv0_up", f"convs.{conv_i}", flip=True, ), ) update( state_dict, convert_modconv( vars, f"G_synthesis/{reso}x{reso}/Conv1", f"convs.{conv_i + 1}" ), ) conv_i += 2 for i in range(0, (log_size - 2) * 2 + 1): update( state_dict, { f"noises.noise_{i}": torch.from_numpy( vars[f"G_synthesis/noise{i}"].value().eval() ) }, ) return state_dict if __name__ == "__main__": device = "cuda" parser = argparse.ArgumentParser( description="Tensorflow to pytorch model checkpoint converter" ) parser.add_argument( "--repo", type=str, required=True, help="path to the offical StyleGAN2 repository with dnnlib/ folder", ) parser.add_argument( "--gen", action="store_true", help="convert the generator weights" ) parser.add_argument( "--disc", action="store_true", help="convert the discriminator weights" ) parser.add_argument( "--channel_multiplier", type=int, default=2, help="channel multiplier factor. config-f = 2, else = 1", ) parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights") args = parser.parse_args() sys.path.append(args.repo) import dnnlib from dnnlib import tflib tflib.init_tf() with open(args.path, "rb") as f: generator, discriminator, g_ema = pickle.load(f) size = g_ema.output_shape[2] n_mlp = 0 mapping_layers_names = g_ema.__getstate__()['components']['mapping'].list_layers() for layer in mapping_layers_names: if layer[0].startswith('Dense'): n_mlp += 1 g = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) state_dict = g.state_dict() state_dict = fill_statedict(state_dict, g_ema.vars, size, n_mlp) g.load_state_dict(state_dict) latent_avg = torch.from_numpy(g_ema.vars["dlatent_avg"].value().eval()) ckpt = {"g_ema": state_dict, "latent_avg": latent_avg} if args.gen: g_train = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) g_train_state = g_train.state_dict() g_train_state = fill_statedict(g_train_state, generator.vars, size, n_mlp) ckpt["g"] = g_train_state if args.disc: disc = Discriminator(size, channel_multiplier=args.channel_multiplier) d_state = disc.state_dict() d_state = discriminator_fill_statedict(d_state, discriminator.vars, size) ckpt["d"] = d_state name = os.path.splitext(os.path.basename(args.path))[0] torch.save(ckpt, name + ".pt") batch_size = {256: 16, 512: 9, 1024: 4} n_sample = batch_size.get(size, 25) g = g.to(device) z = np.random.RandomState(0).randn(n_sample, 512).astype("float32") with torch.no_grad(): img_pt, _ = g( [torch.from_numpy(z).to(device)], truncation=0.5, truncation_latent=latent_avg.to(device), randomize_noise=False, ) Gs_kwargs = dnnlib.EasyDict() Gs_kwargs.randomize_noise = False img_tf = g_ema.run(z, None, **Gs_kwargs) img_tf = torch.from_numpy(img_tf).to(device) img_diff = ((img_pt + 1) / 2).clamp(0.0, 1.0) - ((img_tf.to(device) + 1) / 2).clamp( 0.0, 1.0 ) img_concat = torch.cat((img_tf, img_pt, img_diff), dim=0) print(img_diff.abs().max()) utils.save_image( img_concat, name + ".png", nrow=n_sample, normalize=True, range=(-1, 1) )