File size: 1,830 Bytes
40ce629
 
 
 
 
 
f57ed6a
40ce629
f57ed6a
 
40ce629
f57ed6a
98a2239
40ce629
 
 
51f1e70
38a5e47
9a353a8
cbceca1
feb7040
51f1e70
38a5e47
41d052a
 
 
40ce629
 
b703853
 
40ce629
 
 
 
 
972a2bf
 
 
39868fe
40e259d
 
39868fe
 
40e259d
39868fe
 
 
 
 
 
 
 
972a2bf
 
40e259d
 
28ec963
40e259d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pickle
import sys

import gradio as gr
import numpy as np
import torch
import torch_utils
import torch.nn as nn
from huggingface_hub import hf_hub_download
from transformers import pipeline

sys.path.append('.')
sys.path.append('./Time_TravelRephotography')
sys.path.append('./Time_TravelRephotography/losses')
from argparse import Namespace
from projector import (
    ProjectorArguments,
    main,
)
sys.path.insert(0, 'StyleGAN-Human')

TITLE = 'Time-TravelRephotography'
DESCRIPTION = '''This is an unofficial demo for https://github.com/Time-Travel-Rephotography.
'''
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan-human" alt="visitor badge"/></center>'

TOKEN = "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"


pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")

def load_model(file_name: str, path:str,device: torch.device) -> nn.Module:
    path = hf_hub_download(f'{path}',
                           f'{file_name}',
                           use_auth_token=TOKEN)
    with open(path, 'rb') as f:
        model = torch.load(f)
    model.eval()
    model.to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.z_dim)).to(device)
        label = torch.zeros([1, model.c_dim], device=device)
        model(z, label, force_fp32=True)
    return model
   
def predict(text):
  return pipe(text)[0]["translation_text"]
 
def main():
    load_model("stylegan2-ffhq-config-f","feng2022/Time-TravelRephotography_stylegan2-ffhq-config-f")
    iface = gr.Interface(
      fn=predict, 
      inputs='text',
      outputs='text',
      examples=[["Time-TravelRephotography"]]
    )
    
    iface.launch()
    
if __name__ == '__main__':
    main()