Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,101 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
def img2text(url):
|
6 |
-
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
7 |
-
text = image_to_text_model(url)[0]["generated_text"]
|
8 |
|
9 |
-
print(text)
|
10 |
-
return text
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
15 |
-
story_txt = pipe(text)[0]['generated_text']
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
return audio_data
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
def main():
|
28 |
-
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
|
29 |
-
st.header("Turn Your Image to Audio Story")
|
30 |
-
uploaded_file = st.file_uploader("Select an Image...")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
bytes_data = uploaded_file.getvalue()
|
35 |
-
with open(uploaded_file.name, "wb") as file:
|
36 |
-
file.write(bytes_data)
|
37 |
-
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
38 |
|
39 |
|
40 |
-
#Stage 1: Image to Text
|
41 |
-
st.text('Processing img2text...')
|
42 |
-
scenario = img2text(uploaded_file.name)
|
43 |
-
st.write(scenario)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
story = txt2story(scenario)
|
48 |
-
st.write(story)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
st.audio(audio_data['audio'],
|
57 |
-
format="audio/wav",
|
58 |
-
start_time=0,
|
59 |
-
sample_rate = audio_data['sampling_rate'])
|
60 |
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoModelForSequenceClassification
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
def main():
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
+
st.title("yelp2024fall Test")
|
12 |
+
st.write("Enter a sentence for analysis:")
|
|
|
|
|
13 |
|
14 |
+
user_input = st.text_input("")
|
15 |
+
if user_input:
|
16 |
+
# Approach: AutoModel
|
17 |
+
model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2024fall",
|
18 |
+
num_labels=5)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
20 |
|
21 |
+
inputs = tokenizer(user_input,
|
22 |
+
padding=True,
|
23 |
+
truncation=True,
|
24 |
+
return_tensors='pt')
|
|
|
25 |
|
26 |
+
outputs = model2(**inputs)
|
27 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
28 |
+
predictions = predictions.cpu().detach().numpy()
|
29 |
+
# Get the index of the largest output value
|
30 |
+
max_index = np.argmax(predictions)
|
31 |
+
st.write(f"result (AutoModel) - Label: {max_index}")
|
32 |
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
if __name__ == "__main__":
|
35 |
+
main()
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# import streamlit as st
|
40 |
+
# from transformers import pipeline
|
|
|
|
|
41 |
|
42 |
+
# # img2text
|
43 |
+
# def img2text(url):
|
44 |
+
# image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
45 |
+
# text = image_to_text_model(url)[0]["generated_text"]
|
46 |
|
47 |
+
# print(text)
|
48 |
+
# return text
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# # txt2Story
|
51 |
+
# def txt2story(text):
|
52 |
+
# pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
53 |
+
# story_txt = pipe(text)[0]['generated_text']
|
54 |
|
55 |
+
# print(story_txt)
|
56 |
+
# return story_txt
|
57 |
+
|
58 |
+
# # Story2Audio
|
59 |
+
# def text2audio(story_text):
|
60 |
+
# pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng")
|
61 |
+
# audio_data = pipe(story_text)
|
62 |
+
# return audio_data
|
63 |
+
|
64 |
+
|
65 |
+
# def main():
|
66 |
+
# st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
|
67 |
+
# st.header("Turn Your Image to Audio Story")
|
68 |
+
# uploaded_file = st.file_uploader("Select an Image...")
|
69 |
+
|
70 |
+
# if uploaded_file is not None:
|
71 |
+
# print(uploaded_file)
|
72 |
+
# bytes_data = uploaded_file.getvalue()
|
73 |
+
# with open(uploaded_file.name, "wb") as file:
|
74 |
+
# file.write(bytes_data)
|
75 |
+
# st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
76 |
+
|
77 |
+
|
78 |
+
# #Stage 1: Image to Text
|
79 |
+
# st.text('Processing img2text...')
|
80 |
+
# scenario = img2text(uploaded_file.name)
|
81 |
+
# st.write(scenario)
|
82 |
+
|
83 |
+
# #Stage 2: Text to Story
|
84 |
+
# st.text('Generating a story...')
|
85 |
+
# story = txt2story(scenario)
|
86 |
+
# st.write(story)
|
87 |
+
|
88 |
+
# #Stage 3: Story to Audio data
|
89 |
+
# st.text('Generating audio data...')
|
90 |
+
# audio_data =text2audio(story)
|
91 |
+
|
92 |
+
# # Play button
|
93 |
+
# if st.button("Play Audio"):
|
94 |
+
# st.audio(audio_data['audio'],
|
95 |
+
# format="audio/wav",
|
96 |
+
# start_time=0,
|
97 |
+
# sample_rate = audio_data['sampling_rate'])
|
98 |
+
|
99 |
+
|
100 |
+
# if __name__ == "__main__":
|
101 |
+
# main()
|