Release 0.002
Browse files- __pycache__/stocks.cpython-311.pyc +0 -0
- analysis/__pycache__/fundamental.cpython-311.pyc +0 -0
- analysis/__pycache__/sentiment.cpython-311.pyc +0 -0
- analysis/__pycache__/technical.cpython-311.pyc +0 -0
- analysis/fundamental.py +15 -0
- analysis/sentiment.py +66 -0
- analysis/technical.py +33 -0
- app.py +63 -128
- data/__init__.py +0 -0
- data/__pycache__/__init__.cpython-311.pyc +0 -0
- data/__pycache__/api_client.cpython-311.pyc +0 -0
- data/__pycache__/database.cpython-311.pyc +0 -0
- data/api_client.py +26 -0
- data/database.py +57 -0
- stocks.py +128 -558
- strategies/__pycache__/backtrader.cpython-311.pyc +0 -0
- strategies/backtrader.py +238 -0
- test.py +39 -0
__pycache__/stocks.cpython-311.pyc
CHANGED
Binary files a/__pycache__/stocks.cpython-311.pyc and b/__pycache__/stocks.cpython-311.pyc differ
|
|
analysis/__pycache__/fundamental.cpython-311.pyc
ADDED
Binary file (1.46 kB). View file
|
|
analysis/__pycache__/sentiment.cpython-311.pyc
ADDED
Binary file (4.84 kB). View file
|
|
analysis/__pycache__/technical.cpython-311.pyc
ADDED
Binary file (2.65 kB). View file
|
|
analysis/fundamental.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# analysis/fundamental.py
|
2 |
+
from data.api_client import YahooFinanceClient
|
3 |
+
|
4 |
+
class FundamentalAnalyzer:
|
5 |
+
@staticmethod
|
6 |
+
def analyze(ticker):
|
7 |
+
info = YahooFinanceClient.get_company_info(ticker)
|
8 |
+
return {
|
9 |
+
'trailingPE': float(info.get('trailingPE', 0)),
|
10 |
+
'sectorPE': float(info.get('sectorPE', 0)) if info.get('sectorPE') else None,
|
11 |
+
'revenueGrowth': float(info.get('revenueGrowth', 0)),
|
12 |
+
'profitMargins': float(info.get('profitMargins', 0)),
|
13 |
+
'debtToEquity': float(info.get('debtToEquity', 0)),
|
14 |
+
'shortName': info.get('shortName')
|
15 |
+
}
|
analysis/sentiment.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
from scipy.stats import zscore
|
5 |
+
|
6 |
+
class SentimentAnalyzer:
|
7 |
+
def __init__(self):
|
8 |
+
self.models = {
|
9 |
+
'finbert': AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone"),
|
10 |
+
'financial_sentiment': AutoModelForSequenceClassification.from_pretrained("ahmedrachid/FinancialBERT-Sentiment-Analysis")
|
11 |
+
}
|
12 |
+
self.tokenizers = {
|
13 |
+
'finbert': AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone"),
|
14 |
+
'financial_sentiment': AutoTokenizer.from_pretrained("ahmedrachid/FinancialBERT-Sentiment-Analysis")
|
15 |
+
}
|
16 |
+
self.max_length = 512 # Limite do modelo
|
17 |
+
|
18 |
+
def chunk_text(self, text, tokenizer):
|
19 |
+
tokens = tokenizer.encode(text, truncation=False)
|
20 |
+
return [tokens[i:i+self.max_length] for i in range(0, len(tokens), self.max_length)]
|
21 |
+
|
22 |
+
def preprocess_text(self, item):
|
23 |
+
title = str(item.get('title', '')).strip()
|
24 |
+
content = str(item.get('content', '')).strip()
|
25 |
+
text = f"{title} {content}".strip()
|
26 |
+
return text if text else None
|
27 |
+
|
28 |
+
|
29 |
+
def analyze(self, news):
|
30 |
+
if not news:
|
31 |
+
return {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33}
|
32 |
+
|
33 |
+
sentiment_scores = []
|
34 |
+
|
35 |
+
for item in news:
|
36 |
+
if not isinstance(item, dict):
|
37 |
+
continue
|
38 |
+
|
39 |
+
text = self.preprocess_text(item)
|
40 |
+
if not text:
|
41 |
+
continue
|
42 |
+
|
43 |
+
tokenizer = self.tokenizers['financial_sentiment']
|
44 |
+
model = self.models['financial_sentiment']
|
45 |
+
|
46 |
+
tokenized_chunks = self.chunk_text(text, tokenizer)
|
47 |
+
chunk_scores = []
|
48 |
+
|
49 |
+
for chunk in tokenized_chunks:
|
50 |
+
inputs = tokenizer.decode(chunk, skip_special_tokens=True)
|
51 |
+
inputs = tokenizer(inputs, return_tensors="pt", truncation=True, max_length=self.max_length)
|
52 |
+
outputs = model(**inputs)
|
53 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
54 |
+
chunk_scores.append(probabilities.detach().numpy()[0])
|
55 |
+
|
56 |
+
if chunk_scores:
|
57 |
+
sentiment_scores.append(np.mean(chunk_scores, axis=0))
|
58 |
+
|
59 |
+
if not sentiment_scores:
|
60 |
+
return {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33}
|
61 |
+
|
62 |
+
# Filtro de outliers
|
63 |
+
filtered_scores = [s for s in sentiment_scores if np.abs(zscore(s)).max() < 2]
|
64 |
+
avg_sentiment = np.mean(filtered_scores, axis=0) if filtered_scores else np.mean(sentiment_scores, axis=0)
|
65 |
+
|
66 |
+
return {'negative': float(avg_sentiment[0]), 'neutral': float(avg_sentiment[1]), 'positive': float(avg_sentiment[2])}
|
analysis/technical.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# analysis/technical.py
|
2 |
+
import numpy as np
|
3 |
+
from data.api_client import YahooFinanceClient
|
4 |
+
|
5 |
+
class TechnicalAnalyzer:
|
6 |
+
@staticmethod
|
7 |
+
def calculate_rsi(data, window=14):
|
8 |
+
delta = data['Close'].diff()
|
9 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
10 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
11 |
+
rs = gain / loss
|
12 |
+
return 100 - (100 / (1 + rs))
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def calculate_sma(data, window):
|
16 |
+
return data['Close'].rolling(window=window).mean()
|
17 |
+
|
18 |
+
def analyze(self, ticker):
|
19 |
+
data = YahooFinanceClient.download_data(ticker, period='1y')
|
20 |
+
if data.empty or data.shape[0] < 50:
|
21 |
+
return None
|
22 |
+
|
23 |
+
sma_50 = self.calculate_sma(data, 50).iloc[-1].item()
|
24 |
+
current_price = data['Close'].iloc[-1].item()
|
25 |
+
rsi = self.calculate_rsi(data).iloc[-1].item()
|
26 |
+
|
27 |
+
return {
|
28 |
+
'price': current_price,
|
29 |
+
'sma_50': sma_50,
|
30 |
+
'price_vs_sma': (current_price / sma_50) - 1,
|
31 |
+
'rsi': rsi if not np.isnan(rsi) else 50,
|
32 |
+
'trend': 'bullish' if current_price > sma_50 else 'bearish'
|
33 |
+
}
|
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from datetime import datetime, timedelta
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
class GradioInterface:
|
7 |
def __init__(self, pipeline):
|
@@ -12,20 +14,19 @@ class GradioInterface:
|
|
12 |
'rsi_lower': 30,
|
13 |
'sma_short': 50,
|
14 |
'sma_long': 200,
|
15 |
-
'max_loss_percent':
|
16 |
-
'take_profit_percent':
|
17 |
-
'position_size':
|
18 |
-
'atr_period':
|
19 |
'atr_multiplier': 3,
|
20 |
-
'confidence_threshold'
|
21 |
-
'sentiment_threshold'
|
22 |
}
|
23 |
-
|
24 |
def create_settings_interface(self):
|
25 |
with gr.Blocks() as settings_interface:
|
26 |
with gr.Row():
|
27 |
with gr.Column():
|
28 |
-
# Parâmetros da Estratégia de Trading
|
29 |
gr.Markdown("### Parameters for Trading Strategy")
|
30 |
inputs = {}
|
31 |
inputs['rsi_period'] = gr.Number(value=14, label="RSI Period", minimum=1)
|
@@ -33,68 +34,41 @@ class GradioInterface:
|
|
33 |
inputs['rsi_lower'] = gr.Number(value=30, label="RSI Lower Limit", minimum=0, maximum=100)
|
34 |
inputs['sma_short'] = gr.Number(value=50, label="SMA Short (period)")
|
35 |
inputs['sma_long'] = gr.Number(value=200, label="SMA Long (period)")
|
36 |
-
inputs['max_loss_percent'] = gr.Slider(
|
37 |
-
inputs['take_profit_percent'] = gr.Slider(
|
38 |
-
inputs['position_size'] = gr.Slider(
|
39 |
inputs['atr_period'] = gr.Number(value=14, label="ATR Period")
|
40 |
inputs['atr_multiplier'] = gr.Number(value=3, label="ATR Multiplier")
|
41 |
-
inputs['confidence_threshold'] = gr.
|
42 |
-
inputs['sentiment_threshold'] = gr.
|
43 |
-
save_btn = gr.Button("Save Configuration")
|
44 |
-
|
45 |
gr.Markdown("""
|
46 |
## 📊 Explanation of Trading Strategy Parameters
|
47 |
-
|
48 |
These parameters configure technical indicators to assist in buy and sell decisions for assets.
|
49 |
-
|
50 |
### **📉 RSI (Relative Strength Index)**
|
51 |
-
|
52 |
-
|
53 |
-
- **`
|
54 |
-
- **`rsi_upper` (70)** → If the RSI is greater than this value, it may indicate overbought conditions (sell signal).
|
55 |
-
- **`rsi_lower` (30)** → If the RSI is less than this value, it may indicate oversold conditions (buy signal).
|
56 |
-
|
57 |
-
---
|
58 |
-
|
59 |
### **📈 Simple Moving Averages (SMA)**
|
60 |
-
|
61 |
-
|
62 |
-
- **`sma_short` (50)** → Short-term moving average, used to capture short-term trends.
|
63 |
-
- **`sma_long` (200)** → Long-term moving average, used to capture long-term trends.
|
64 |
-
|
65 |
-
---
|
66 |
-
|
67 |
### **📉 Risk Management**
|
68 |
-
|
69 |
-
- **`
|
70 |
-
- **`
|
71 |
-
- **`position_size` (0.1)** → Proportion of total capital to be used in a trade (10% of the balance).
|
72 |
-
|
73 |
-
---
|
74 |
-
|
75 |
### **📊 ATR (Average True Range) - Volatility**
|
76 |
-
The ATR is used to measure the volatility of an asset.
|
77 |
-
|
78 |
- **`atr_period` (14)** → Number of periods to calculate the ATR.
|
79 |
-
- **`atr_multiplier` (3)** → ATR multiplier
|
80 |
-
|
81 |
-
---
|
82 |
-
|
83 |
-
## **🚀 How Do These Parameters Affect the Strategy?**
|
84 |
-
|
85 |
-
- **If `rsi_lower` is lower (e.g., 20), the strategy will buy in more oversold regions.**
|
86 |
-
- **If `max_loss_percent` is too small, it may close trades prematurely.**
|
87 |
-
- **If `atr_multiplier` is larger, the stop loss will be wider, allowing for more volatility.**
|
88 |
-
- **If `sma_short` and `sma_long` are far apart, entries will be more conservative.**
|
89 |
""")
|
90 |
-
|
91 |
save_btn.click(
|
92 |
self.save_settings,
|
93 |
inputs=[v for v in inputs.values()],
|
94 |
outputs=None
|
95 |
)
|
96 |
return settings_interface
|
97 |
-
|
98 |
def save_settings(self, *args):
|
99 |
params = [
|
100 |
'rsi_period', 'rsi_upper', 'rsi_lower',
|
@@ -102,57 +76,54 @@ class GradioInterface:
|
|
102 |
'take_profit_percent', 'position_size',
|
103 |
'atr_period', 'atr_multiplier', 'confidence_threshold', 'sentiment_threshold'
|
104 |
]
|
105 |
-
|
106 |
self.strategy_params = dict(zip(params, args))
|
107 |
-
print("
|
108 |
return gr.Info("Settings saved!")
|
109 |
-
|
110 |
def create_main_interface(self):
|
111 |
with gr.Blocks() as main_interface:
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
ticker_input = gr.Text(label="Ticker (ex: VALE)", placeholder="Insert a stock ticker based on Yahoo Finance")
|
115 |
-
api_key_input = gr.Textbox(label="API Key (required)", placeholder="Insert your API Key https://newsapi.org/")
|
116 |
fetch_new = gr.Dropdown([True, False], label="Check last news information online (Requires API)?", value=False)
|
117 |
-
|
|
|
118 |
years_back = gr.Number(5, label="Historical Data (years back)")
|
119 |
-
commission = gr.Number(
|
120 |
run_btn = gr.Button("Execute Analysis")
|
121 |
with gr.Column():
|
122 |
plot_output = gr.Plot()
|
123 |
with gr.Row():
|
124 |
-
# Adicionar uma saída para os resultados
|
125 |
output_md = gr.Markdown()
|
126 |
with gr.Row():
|
127 |
-
# Adicionar uma saída para os resultados
|
128 |
output_ops = gr.Markdown()
|
129 |
-
|
130 |
run_btn.click(
|
131 |
self.run_full_analysis,
|
132 |
inputs=[ticker_input, fetch_new, initial_investment, years_back, commission, api_key_input],
|
133 |
outputs=[output_md, output_ops, plot_output]
|
134 |
)
|
135 |
return main_interface
|
136 |
-
|
137 |
def run_full_analysis(self, ticker, fetch_new, initial_investment, years_back, commission, api_key):
|
138 |
# Atualizar os parâmetros da pipeline
|
139 |
-
self.pipeline.set_sentiment_threshold(float(self.strategy_params['sentiment_threshold'])/100)
|
140 |
-
self.pipeline.set_confidence_threshold(float(self.strategy_params['confidence_threshold'])/100)
|
141 |
-
|
142 |
# Executar análise
|
143 |
result = self.pipeline.analyze_company(
|
144 |
ticker=ticker,
|
145 |
news_api_key=api_key,
|
146 |
fetch_new=fetch_new
|
147 |
)
|
148 |
-
|
149 |
if not result:
|
150 |
-
return "Something wrong
|
151 |
-
|
152 |
# Configurar simulação
|
153 |
end_date = datetime.now()
|
154 |
-
start_date = end_date - timedelta(days=int(years_back*365))
|
155 |
-
|
156 |
# Criar estratégia personalizada com os parâmetros
|
157 |
custom_strategy_params = {
|
158 |
'rsi_period': int(self.strategy_params['rsi_period']),
|
@@ -160,27 +131,18 @@ class GradioInterface:
|
|
160 |
'rsi_lower': int(self.strategy_params['rsi_lower']),
|
161 |
'sma_short': int(self.strategy_params['sma_short']),
|
162 |
'sma_long': int(self.strategy_params['sma_long']),
|
163 |
-
'max_loss_percent': float(self.strategy_params['max_loss_percent']),
|
164 |
-
'take_profit_percent': float(self.strategy_params['take_profit_percent']),
|
165 |
-
'position_size': float(self.strategy_params['position_size']),
|
166 |
'atr_period': int(self.strategy_params['atr_period']),
|
167 |
'atr_multiplier': int(self.strategy_params['atr_multiplier']),
|
168 |
-
'confidence_threshold'
|
169 |
-
'sentiment_threshold'
|
170 |
}
|
171 |
-
|
172 |
-
# Criar uma instância de Progress
|
173 |
-
progress = gr.Progress()
|
174 |
|
175 |
-
# Atualizar progresso
|
176 |
-
progress(0.3, desc="Preparing simulation...")
|
177 |
-
|
178 |
# Executar simulação
|
179 |
-
bt_integration =
|
180 |
bt_integration.add_data_feed(ticker, start_date, end_date)
|
181 |
-
|
182 |
-
progress(0.6, desc="Executing simulation...")
|
183 |
-
|
184 |
final_value, operation_logs = bt_integration.run_simulation(
|
185 |
initial_cash=initial_investment,
|
186 |
commission=commission
|
@@ -204,23 +166,12 @@ class GradioInterface:
|
|
204 |
date = parts[0].strip()
|
205 |
details = ", ".join(parts[1:])
|
206 |
formatted_logs.append(f"- 📈 **Result** ({date}): {details}")
|
207 |
-
|
208 |
-
continue
|
209 |
-
|
210 |
-
|
211 |
# Adicionar seção de logs na saída
|
212 |
output_ops = "### Log :\n\n" + "\n".join(formatted_logs)
|
213 |
-
|
214 |
-
progress(0.9, desc="Generating final result...")
|
215 |
-
|
216 |
-
# Extrair os valores do JSON de sentimento
|
217 |
-
sentiment = result['sentiment']['sentiment']
|
218 |
-
negative_sentiment = sentiment.get('negative', 0.0)
|
219 |
-
neutral_sentiment = sentiment.get('neutral', 0.0)
|
220 |
-
positive_sentiment = sentiment.get('positive', 0.0)
|
221 |
|
222 |
-
|
223 |
# Gerar saída formatada em Markdown
|
|
|
224 |
output = f"""
|
225 |
## Recommendation: {result['recommendation']}
|
226 |
|
@@ -228,58 +179,43 @@ class GradioInterface:
|
|
228 |
|
229 |
## Simulation Results:
|
230 |
- **Initial Investment**: ${initial_investment:.2f}
|
231 |
-
- **Simulation Summary**: {(final_value/initial_investment-1)*100:.2f}%
|
232 |
- **Final Portfolio Value**: ${final_value:.2f}
|
233 |
|
234 |
### Details:
|
235 |
|
236 |
-
- **Negative Sentiment**: {
|
237 |
-
- **Neutral Sentiment**: {
|
238 |
-
- **Positive Sentiment**: {
|
239 |
|
240 |
- **RSI**: {result['technical']['rsi']:.1f}
|
241 |
- **Price vs SMA50**: {result['technical']['price_vs_sma']:.2%}
|
242 |
- **P/E Ratio**: {result['fundamental'].get('trailingPE', 'N/A')}
|
243 |
"""
|
244 |
-
|
245 |
-
# Gerar gráfico simples
|
246 |
plot = self.generate_simple_plot(bt_integration)
|
247 |
-
|
248 |
return output, output_ops, plot
|
249 |
|
250 |
-
# Função para gerar um gráfico simples
|
251 |
def generate_simple_plot(self, bt_integration):
|
252 |
-
import matplotlib.pyplot as plt
|
253 |
-
import matplotlib.dates as mdates
|
254 |
-
|
255 |
plt.figure(figsize=(12, 6))
|
256 |
-
|
257 |
-
# Get data feed from Backtrader
|
258 |
datafeed = bt_integration.cerebro.datas[0]
|
259 |
-
|
260 |
-
# Extract dates and closing prices
|
261 |
dates = [datetime.fromordinal(int(date)) for date in datafeed.datetime.array]
|
262 |
closes = datafeed.close.array
|
263 |
-
|
264 |
-
# Plot
|
265 |
plt.plot(dates, closes, label='Close Price', linewidth=1.5)
|
266 |
-
|
267 |
-
# Format dates
|
268 |
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
|
269 |
plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=3))
|
270 |
-
plt.gcf().autofmt_xdate()
|
271 |
-
|
272 |
-
# Add labels and grid
|
273 |
plt.title("Historical Price Data")
|
274 |
-
plt.xlabel("
|
275 |
plt.ylabel("Price (USD)")
|
276 |
plt.legend()
|
277 |
plt.grid(True, alpha=0.3)
|
278 |
-
|
279 |
return plt.gcf()
|
280 |
-
# Configuração da interface completa
|
281 |
-
pipeline = st.AnalysisPipeline()
|
282 |
|
|
|
|
|
283 |
interface = GradioInterface(pipeline)
|
284 |
|
285 |
demo = gr.TabbedInterface(
|
@@ -289,5 +225,4 @@ demo = gr.TabbedInterface(
|
|
289 |
)
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
-
#demo.launch(share=True)
|
293 |
demo.launch(share=True)
|
|
|
1 |
+
# app.py
|
2 |
import gradio as gr
|
3 |
from datetime import datetime, timedelta
|
4 |
+
from stocks import AnalysisPipeline, BacktraderIntegration
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import matplotlib.dates as mdates
|
7 |
|
8 |
class GradioInterface:
|
9 |
def __init__(self, pipeline):
|
|
|
14 |
'rsi_lower': 30,
|
15 |
'sma_short': 50,
|
16 |
'sma_long': 200,
|
17 |
+
'max_loss_percent': 5,
|
18 |
+
'take_profit_percent': 5,
|
19 |
+
'position_size': 10,
|
20 |
+
'atr_period': 7,
|
21 |
'atr_multiplier': 3,
|
22 |
+
'confidence_threshold': 35,
|
23 |
+
'sentiment_threshold': 25
|
24 |
}
|
25 |
+
|
26 |
def create_settings_interface(self):
|
27 |
with gr.Blocks() as settings_interface:
|
28 |
with gr.Row():
|
29 |
with gr.Column():
|
|
|
30 |
gr.Markdown("### Parameters for Trading Strategy")
|
31 |
inputs = {}
|
32 |
inputs['rsi_period'] = gr.Number(value=14, label="RSI Period", minimum=1)
|
|
|
34 |
inputs['rsi_lower'] = gr.Number(value=30, label="RSI Lower Limit", minimum=0, maximum=100)
|
35 |
inputs['sma_short'] = gr.Number(value=50, label="SMA Short (period)")
|
36 |
inputs['sma_long'] = gr.Number(value=200, label="SMA Long (period)")
|
37 |
+
inputs['max_loss_percent'] = gr.Slider(1, 100, value=5, step=5, label="Stop Loss (%)")
|
38 |
+
inputs['take_profit_percent'] = gr.Slider(1, 100, value=5, step=5, label="Take Profit (%)")
|
39 |
+
inputs['position_size'] = gr.Slider(1, 100, value=5, step=5, label="Position Size(%)")
|
40 |
inputs['atr_period'] = gr.Number(value=14, label="ATR Period")
|
41 |
inputs['atr_multiplier'] = gr.Number(value=3, label="ATR Multiplier")
|
42 |
+
inputs['confidence_threshold'] = gr.Slider(1, 100, value=30, step=5, label="Confidence Threshold(%)")
|
43 |
+
inputs['sentiment_threshold'] = gr.Slider(1, 100, value=25, step=5, label="Sentiment Threshold(%)")
|
44 |
+
save_btn = gr.Button("Save Configuration")
|
45 |
+
|
46 |
gr.Markdown("""
|
47 |
## 📊 Explanation of Trading Strategy Parameters
|
|
|
48 |
These parameters configure technical indicators to assist in buy and sell decisions for assets.
|
|
|
49 |
### **📉 RSI (Relative Strength Index)**
|
50 |
+
- **`rsi_period` (14)** → Number of periods to calculate the RSI.
|
51 |
+
- **`rsi_upper` (70)** → Overbought conditions (sell signal).
|
52 |
+
- **`rsi_lower` (30)** → Oversold conditions (buy signal).
|
|
|
|
|
|
|
|
|
|
|
53 |
### **📈 Simple Moving Averages (SMA)**
|
54 |
+
- **`sma_short` (50)** → Short-term moving average.
|
55 |
+
- **`sma_long` (200)** → Long-term moving average.
|
|
|
|
|
|
|
|
|
|
|
56 |
### **📉 Risk Management**
|
57 |
+
- **`max_loss_percent` (0.02)** → Stop Loss (loss limit).
|
58 |
+
- **`take_profit_percent` (0.05)** → Take Profit (profit limit).
|
59 |
+
- **`position_size` (0.1)** → Proportion of total capital to be used in a trade.
|
|
|
|
|
|
|
|
|
60 |
### **📊 ATR (Average True Range) - Volatility**
|
|
|
|
|
61 |
- **`atr_period` (14)** → Number of periods to calculate the ATR.
|
62 |
+
- **`atr_multiplier` (3)** → ATR multiplier for dynamic stop loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
""")
|
64 |
+
|
65 |
save_btn.click(
|
66 |
self.save_settings,
|
67 |
inputs=[v for v in inputs.values()],
|
68 |
outputs=None
|
69 |
)
|
70 |
return settings_interface
|
71 |
+
|
72 |
def save_settings(self, *args):
|
73 |
params = [
|
74 |
'rsi_period', 'rsi_upper', 'rsi_lower',
|
|
|
76 |
'take_profit_percent', 'position_size',
|
77 |
'atr_period', 'atr_multiplier', 'confidence_threshold', 'sentiment_threshold'
|
78 |
]
|
|
|
79 |
self.strategy_params = dict(zip(params, args))
|
80 |
+
print("Updated parameters:", self.strategy_params)
|
81 |
return gr.Info("Settings saved!")
|
82 |
+
|
83 |
def create_main_interface(self):
|
84 |
with gr.Blocks() as main_interface:
|
85 |
with gr.Row():
|
86 |
with gr.Column():
|
87 |
ticker_input = gr.Text(label="Ticker (ex: VALE)", placeholder="Insert a stock ticker based on Yahoo Finance")
|
|
|
88 |
fetch_new = gr.Dropdown([True, False], label="Check last news information online (Requires API)?", value=False)
|
89 |
+
api_key_input = gr.Textbox(label="API Key", placeholder="Insert your API Key https://newsapi.org/")
|
90 |
+
initial_investment = gr.Number(10000, label="Initial Investment (USD)")
|
91 |
years_back = gr.Number(5, label="Historical Data (years back)")
|
92 |
+
commission = gr.Number(2, label="Trade Commission (%)", minimum=0, maximum=100)
|
93 |
run_btn = gr.Button("Execute Analysis")
|
94 |
with gr.Column():
|
95 |
plot_output = gr.Plot()
|
96 |
with gr.Row():
|
|
|
97 |
output_md = gr.Markdown()
|
98 |
with gr.Row():
|
|
|
99 |
output_ops = gr.Markdown()
|
100 |
+
|
101 |
run_btn.click(
|
102 |
self.run_full_analysis,
|
103 |
inputs=[ticker_input, fetch_new, initial_investment, years_back, commission, api_key_input],
|
104 |
outputs=[output_md, output_ops, plot_output]
|
105 |
)
|
106 |
return main_interface
|
107 |
+
|
108 |
def run_full_analysis(self, ticker, fetch_new, initial_investment, years_back, commission, api_key):
|
109 |
# Atualizar os parâmetros da pipeline
|
110 |
+
self.pipeline.set_sentiment_threshold(float(self.strategy_params['sentiment_threshold']) / 100)
|
111 |
+
self.pipeline.set_confidence_threshold(float(self.strategy_params['confidence_threshold']) / 100)
|
112 |
+
|
113 |
# Executar análise
|
114 |
result = self.pipeline.analyze_company(
|
115 |
ticker=ticker,
|
116 |
news_api_key=api_key,
|
117 |
fetch_new=fetch_new
|
118 |
)
|
119 |
+
|
120 |
if not result:
|
121 |
+
return "Something went wrong. Please check your inputs.", None, None
|
122 |
+
|
123 |
# Configurar simulação
|
124 |
end_date = datetime.now()
|
125 |
+
start_date = end_date - timedelta(days=int(years_back * 365))
|
126 |
+
|
127 |
# Criar estratégia personalizada com os parâmetros
|
128 |
custom_strategy_params = {
|
129 |
'rsi_period': int(self.strategy_params['rsi_period']),
|
|
|
131 |
'rsi_lower': int(self.strategy_params['rsi_lower']),
|
132 |
'sma_short': int(self.strategy_params['sma_short']),
|
133 |
'sma_long': int(self.strategy_params['sma_long']),
|
134 |
+
'max_loss_percent': float(self.strategy_params['max_loss_percent'])/100,
|
135 |
+
'take_profit_percent': float(self.strategy_params['take_profit_percent'])/100,
|
136 |
+
'position_size': float(self.strategy_params['position_size'])/100,
|
137 |
'atr_period': int(self.strategy_params['atr_period']),
|
138 |
'atr_multiplier': int(self.strategy_params['atr_multiplier']),
|
139 |
+
'confidence_threshold': float(self.strategy_params['confidence_threshold'])/100,
|
140 |
+
'sentiment_threshold': float(self.strategy_params['sentiment_threshold'])/100
|
141 |
}
|
|
|
|
|
|
|
142 |
|
|
|
|
|
|
|
143 |
# Executar simulação
|
144 |
+
bt_integration = BacktraderIntegration(analysis_result=result, strategy_params=custom_strategy_params)
|
145 |
bt_integration.add_data_feed(ticker, start_date, end_date)
|
|
|
|
|
|
|
146 |
final_value, operation_logs = bt_integration.run_simulation(
|
147 |
initial_cash=initial_investment,
|
148 |
commission=commission
|
|
|
166 |
date = parts[0].strip()
|
167 |
details = ", ".join(parts[1:])
|
168 |
formatted_logs.append(f"- 📈 **Result** ({date}): {details}")
|
169 |
+
|
|
|
|
|
|
|
170 |
# Adicionar seção de logs na saída
|
171 |
output_ops = "### Log :\n\n" + "\n".join(formatted_logs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
|
|
173 |
# Gerar saída formatada em Markdown
|
174 |
+
sentiment = result['sentiment']
|
175 |
output = f"""
|
176 |
## Recommendation: {result['recommendation']}
|
177 |
|
|
|
179 |
|
180 |
## Simulation Results:
|
181 |
- **Initial Investment**: ${initial_investment:.2f}
|
182 |
+
- **Simulation Summary**: {(final_value / initial_investment - 1) * 100:.2f}%
|
183 |
- **Final Portfolio Value**: ${final_value:.2f}
|
184 |
|
185 |
### Details:
|
186 |
|
187 |
+
- **Negative Sentiment**: {sentiment.get('negative', 0.0):.2%}
|
188 |
+
- **Neutral Sentiment**: {sentiment.get('neutral', 0.0):.2%}
|
189 |
+
- **Positive Sentiment**: {sentiment.get('positive', 0.0):.2%}
|
190 |
|
191 |
- **RSI**: {result['technical']['rsi']:.1f}
|
192 |
- **Price vs SMA50**: {result['technical']['price_vs_sma']:.2%}
|
193 |
- **P/E Ratio**: {result['fundamental'].get('trailingPE', 'N/A')}
|
194 |
"""
|
195 |
+
|
196 |
+
# Gerar gráfico simples
|
197 |
plot = self.generate_simple_plot(bt_integration)
|
198 |
+
|
199 |
return output, output_ops, plot
|
200 |
|
|
|
201 |
def generate_simple_plot(self, bt_integration):
|
|
|
|
|
|
|
202 |
plt.figure(figsize=(12, 6))
|
|
|
|
|
203 |
datafeed = bt_integration.cerebro.datas[0]
|
|
|
|
|
204 |
dates = [datetime.fromordinal(int(date)) for date in datafeed.datetime.array]
|
205 |
closes = datafeed.close.array
|
|
|
|
|
206 |
plt.plot(dates, closes, label='Close Price', linewidth=1.5)
|
|
|
|
|
207 |
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
|
208 |
plt.gca().xaxis.set_major_locator(mdates.MonthLocator(interval=3))
|
209 |
+
plt.gcf().autofmt_xdate()
|
|
|
|
|
210 |
plt.title("Historical Price Data")
|
211 |
+
plt.xlabel("Date")
|
212 |
plt.ylabel("Price (USD)")
|
213 |
plt.legend()
|
214 |
plt.grid(True, alpha=0.3)
|
|
|
215 |
return plt.gcf()
|
|
|
|
|
216 |
|
217 |
+
# Configuração da interface completa
|
218 |
+
pipeline = AnalysisPipeline()
|
219 |
interface = GradioInterface(pipeline)
|
220 |
|
221 |
demo = gr.TabbedInterface(
|
|
|
225 |
)
|
226 |
|
227 |
if __name__ == "__main__":
|
|
|
228 |
demo.launch(share=True)
|
data/__init__.py
ADDED
File without changes
|
data/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (144 Bytes). View file
|
|
data/__pycache__/api_client.cpython-311.pyc
ADDED
Binary file (2.33 kB). View file
|
|
data/__pycache__/database.cpython-311.pyc
ADDED
Binary file (4.25 kB). View file
|
|
data/api_client.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# data/api_client.py
|
2 |
+
import yfinance as yf
|
3 |
+
from newsapi import NewsApiClient
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
|
6 |
+
class YahooFinanceClient:
|
7 |
+
@staticmethod
|
8 |
+
def download_data(ticker, start_str=None, end_str=None, period="6mo"):
|
9 |
+
if period:
|
10 |
+
return yf.download(ticker, period=period, progress=False)
|
11 |
+
else:
|
12 |
+
return yf.download(ticker, start=start_str, end=end_str, progress=False)
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def get_company_info(ticker):
|
16 |
+
company = yf.Ticker(ticker)
|
17 |
+
return company.info
|
18 |
+
|
19 |
+
class NewsAPIClient:
|
20 |
+
def __init__(self, api_key):
|
21 |
+
self.client = NewsApiClient(api_key=api_key)
|
22 |
+
|
23 |
+
def get_news(self, shortName, days_back=15):
|
24 |
+
from_date = (datetime.now() - timedelta(days=days_back)).strftime('%Y-%m-%d')
|
25 |
+
return self.client.get_everything(q=shortName, from_param=from_date, language='en', sort_by='relevancy', page_size=20)['articles']
|
26 |
+
|
data/database.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# data/database.py
|
2 |
+
from sqlalchemy import create_engine, Column, Integer, String, JSON
|
3 |
+
from sqlalchemy.ext.declarative import declarative_base
|
4 |
+
from sqlalchemy.orm import sessionmaker
|
5 |
+
from datetime import datetime
|
6 |
+
|
7 |
+
Base = declarative_base()
|
8 |
+
|
9 |
+
class CompanyData(Base):
|
10 |
+
__tablename__ = 'company_data'
|
11 |
+
id = Column(Integer, primary_key=True)
|
12 |
+
ticker = Column(String)
|
13 |
+
data_type = Column(String)
|
14 |
+
data = Column(JSON)
|
15 |
+
date = Column(String)
|
16 |
+
|
17 |
+
class DatabaseManager:
|
18 |
+
def __init__(self, db_url='sqlite:///financial_data.db'):
|
19 |
+
self.engine = create_engine(db_url)
|
20 |
+
self.Session = sessionmaker(bind=self.engine)
|
21 |
+
Base.metadata.create_all(self.engine)
|
22 |
+
|
23 |
+
def save_data(self, ticker, data_type, data):
|
24 |
+
session = self.Session()
|
25 |
+
try:
|
26 |
+
new_entry = CompanyData(
|
27 |
+
ticker=ticker,
|
28 |
+
data_type=data_type,
|
29 |
+
data=data,
|
30 |
+
date=datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
31 |
+
)
|
32 |
+
session.add(new_entry)
|
33 |
+
session.commit()
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error saving data: {e}")
|
36 |
+
finally:
|
37 |
+
session.close()
|
38 |
+
|
39 |
+
def get_historical_data(self, ticker):
|
40 |
+
session = self.Session()
|
41 |
+
try:
|
42 |
+
financials = session.query(CompanyData).filter(
|
43 |
+
CompanyData.ticker == ticker,
|
44 |
+
CompanyData.data_type == 'financials'
|
45 |
+
).order_by(CompanyData.date.desc()).first()
|
46 |
+
|
47 |
+
news = session.query(CompanyData).filter(
|
48 |
+
CompanyData.ticker == ticker,
|
49 |
+
CompanyData.data_type == 'news'
|
50 |
+
).order_by(CompanyData.date.desc()).all()
|
51 |
+
|
52 |
+
return {
|
53 |
+
'financials': financials.data if financials else None,
|
54 |
+
'news': [n.data for n in news]
|
55 |
+
}
|
56 |
+
finally:
|
57 |
+
session.close()
|
stocks.py
CHANGED
@@ -1,158 +1,26 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
import numpy as np
|
4 |
-
import torch
|
5 |
import json
|
6 |
-
from datetime import datetime, timedelta
|
7 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
-
from sqlalchemy import create_engine, Column, Integer, String, JSON
|
9 |
-
from sqlalchemy.ext.declarative import declarative_base
|
10 |
-
from sqlalchemy.orm import sessionmaker
|
11 |
-
from newsapi import NewsApiClient
|
12 |
from functools import lru_cache
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
engine = create_engine('sqlite:///financial_data.db')
|
20 |
-
Session = sessionmaker(bind=engine)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
ticker = Column(String)
|
27 |
-
data_type = Column(String)
|
28 |
-
data = Column(JSON)
|
29 |
-
date = Column(String)
|
30 |
-
|
31 |
-
# 3. Criar tabelas (após definir todos os modelos)
|
32 |
-
Base.metadata.create_all(engine)
|
33 |
-
|
34 |
-
# 4. Class for Financial Analyst
|
35 |
-
class FinancialAnalyst:
|
36 |
-
def __init__(self):
|
37 |
-
self.models = {}
|
38 |
-
self.tokenizers = {}
|
39 |
-
# 2. LM Models for Financial Analysis
|
40 |
-
FINANCIAL_MODELS = {
|
41 |
-
'finbert': {
|
42 |
-
'model': "ProsusAI/finbert",
|
43 |
-
'tokenizer': "ProsusAI/finbert"
|
44 |
-
},
|
45 |
-
'financial_sentiment': {
|
46 |
-
'model': "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
|
47 |
-
'tokenizer': "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
48 |
-
}
|
49 |
-
}
|
50 |
-
|
51 |
-
for name, config in FINANCIAL_MODELS.items():
|
52 |
-
try:
|
53 |
-
self.tokenizers[name] = AutoTokenizer.from_pretrained(config['tokenizer'])
|
54 |
-
# Use cache to avoid downloading the model multiple times
|
55 |
-
self.models[name] = self._load_model(config['model'])
|
56 |
-
print(f"Model {name} loaded successfully")
|
57 |
-
except Exception as e:
|
58 |
-
print(f"Error loading model {name}: {e}")
|
59 |
-
if name == 'financial_sentiment':
|
60 |
-
print("Using FinBERT as the fallback for financial sentiment analysis")
|
61 |
-
self.models[name] = self.models['finbert']
|
62 |
-
self.tokenizers[name] = self.tokenizers['finbert']
|
63 |
-
|
64 |
-
@lru_cache(maxsize=2) # Cache for 2 models
|
65 |
-
def _load_model(self, model_name):
|
66 |
-
return AutoModelForSequenceClassification.from_pretrained(model_name)
|
67 |
-
|
68 |
-
# 4. Method for saving data in the database
|
69 |
-
def save_data(ticker, data_type, data):
|
70 |
-
session = Session()
|
71 |
-
try:
|
72 |
-
new_entry = CompanyData(
|
73 |
-
ticker=ticker,
|
74 |
-
data_type=data_type,
|
75 |
-
data=data,
|
76 |
-
date=datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
77 |
-
)
|
78 |
-
session.add(new_entry)
|
79 |
-
session.commit()
|
80 |
-
except Exception as e:
|
81 |
-
print(f"Error to save data in the database: {e}")
|
82 |
-
finally:
|
83 |
-
session.close()
|
84 |
-
# 4.1 Method for getting historical data from the database
|
85 |
-
def get_historical_data(ticker):
|
86 |
-
session = Session()
|
87 |
-
try:
|
88 |
-
financials = session.query(CompanyData).filter(
|
89 |
-
CompanyData.ticker == ticker,
|
90 |
-
CompanyData.data_type == 'financials'
|
91 |
-
).order_by(CompanyData.date.desc()).first()
|
92 |
-
|
93 |
-
news = session.query(CompanyData).filter(
|
94 |
-
CompanyData.ticker == ticker,
|
95 |
-
CompanyData.data_type == 'news'
|
96 |
-
).order_by(CompanyData.date.desc()).all()
|
97 |
|
98 |
-
|
99 |
-
'financials': financials.data if financials else None,
|
100 |
-
'news': [n.data for n in news]
|
101 |
-
}
|
102 |
-
finally:
|
103 |
-
session.close()
|
104 |
-
|
105 |
-
# 5. Technical Analysis
|
106 |
-
def calculate_rsi(data, window=14):
|
107 |
-
delta = data['Close'].diff()
|
108 |
-
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
109 |
-
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
110 |
-
rs = gain / loss
|
111 |
-
rsi = 100 - (100 / (1 + rs))
|
112 |
-
return rsi.iloc[-1]
|
113 |
-
|
114 |
-
# 5.1 Technical Analysis
|
115 |
-
def technical_analysis(ticker):
|
116 |
-
try:
|
117 |
-
# Colecting data from Yahoo Finance
|
118 |
-
data = yf.download(ticker, period="6mo", progress=False)
|
119 |
-
|
120 |
-
# Check if there is enough data
|
121 |
-
if data.empty or data.shape[0] < 50: # At least 50 days of data
|
122 |
-
print(f"Insuficient data for {ticker}")
|
123 |
-
return None
|
124 |
-
|
125 |
-
# Remove missing values
|
126 |
-
data = data.dropna()
|
127 |
-
|
128 |
-
# Calculate SMA50
|
129 |
-
sma_50 = data['Close'].rolling(50).mean().iloc[-1].item()
|
130 |
-
current_price = data['Close'].iloc[-1].item()
|
131 |
-
|
132 |
-
# Calculate RSI
|
133 |
-
delta = data['Close'].diff().dropna()
|
134 |
-
gain = delta.where(delta > 0, 0.0)
|
135 |
-
loss = -delta.where(delta < 0, 0.0)
|
136 |
-
|
137 |
-
avg_gain = gain.rolling(14).mean()
|
138 |
-
avg_loss = loss.rolling(14).mean()
|
139 |
-
|
140 |
-
rs = avg_gain / avg_loss
|
141 |
-
rsi = (100 - (100 / (1 + rs))).iloc[-1].item()
|
142 |
-
|
143 |
-
return {
|
144 |
-
'price': current_price,
|
145 |
-
'sma_50': sma_50,
|
146 |
-
'price_vs_sma': (current_price / sma_50) - 1,
|
147 |
-
'rsi': rsi if not np.isnan(rsi) else 50,
|
148 |
-
'trend': 'bullish' if current_price > sma_50 else 'bearish'
|
149 |
-
}
|
150 |
-
|
151 |
-
except Exception as e:
|
152 |
-
print(f"Error in the thecnical analysis: {e}")
|
153 |
-
return None
|
154 |
-
|
155 |
-
# 6. Confidence Calculator
|
156 |
class ConfidenceCalculator:
|
157 |
def __init__(self):
|
158 |
self.weights = {
|
@@ -160,18 +28,18 @@ class ConfidenceCalculator:
|
|
160 |
'technical': 0.3,
|
161 |
'fundamental': 0.3
|
162 |
}
|
163 |
-
|
164 |
def calculate(self, sentiment, technical, fundamental):
|
165 |
-
sentiment_score = sentiment
|
166 |
technical_score = self._normalize_technical(technical)
|
167 |
fundamental_score = self._normalize_fundamental(fundamental)
|
168 |
-
|
169 |
weighted_score = (
|
170 |
sentiment_score * self.weights['sentiment'] +
|
171 |
technical_score * self.weights['technical'] +
|
172 |
fundamental_score * self.weights['fundamental']
|
173 |
)
|
174 |
-
|
175 |
return {
|
176 |
'total_confidence': weighted_score,
|
177 |
'components': {
|
@@ -180,172 +48,104 @@ class ConfidenceCalculator:
|
|
180 |
'fundamental': fundamental_score
|
181 |
}
|
182 |
}
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
def _normalize_technical(self, tech):
|
185 |
if tech is None:
|
186 |
return 0.5
|
187 |
-
rsi_score = 1 - abs(tech['rsi'] - 50)/50
|
188 |
price_score = np.tanh(tech['price_vs_sma'] * 100)
|
189 |
-
return 0.6*rsi_score + 0.4*price_score
|
190 |
-
|
191 |
def _normalize_fundamental(self, fund):
|
192 |
if not fund:
|
193 |
return 0.5
|
194 |
-
|
195 |
pe_ratio = fund.get('pe_ratio', 0)
|
196 |
sector_pe = fund.get('sector_pe')
|
197 |
revenue_growth = fund.get('revenue_growth', 0)
|
198 |
-
|
199 |
-
# Tratar casos onde sector_pe é None
|
200 |
if sector_pe is None:
|
201 |
-
pe_score = 0.5
|
202 |
else:
|
203 |
pe_score = 1 if pe_ratio < sector_pe else 0.5
|
204 |
-
|
205 |
growth_score = min(revenue_growth / 20, 1)
|
206 |
-
|
207 |
return 0.5 * pe_score + 0.5 * growth_score
|
208 |
|
209 |
-
#
|
210 |
class AnalysisPipeline:
|
211 |
def __init__(self, sentiment_threshold=0.6, confidence_threshold=0.7):
|
212 |
-
self.analyst = FinancialAnalyst()
|
213 |
self.confidence_calc = ConfidenceCalculator()
|
214 |
-
self.sentiment_threshold = sentiment_threshold
|
215 |
-
self.confidence_threshold = confidence_threshold
|
216 |
-
|
217 |
def set_sentiment_threshold(self, sentiment_threshold):
|
218 |
self.sentiment_threshold = sentiment_threshold
|
219 |
|
220 |
def set_confidence_threshold(self, confidence_threshold):
|
221 |
self.confidence_threshold = confidence_threshold
|
222 |
-
|
223 |
-
# 7.1 Method for getting the fundamental data
|
224 |
-
def get_fundamental_data(self, ticker):
|
225 |
-
try:
|
226 |
-
company = yf.Ticker(ticker)
|
227 |
-
info = company.info
|
228 |
-
|
229 |
-
# ensure that the data is valid
|
230 |
-
return {
|
231 |
-
'trailingPE': float(info.get('trailingPE', 0)),
|
232 |
-
'sectorPE': float(info.get('sectorPE', 0)) if info.get('sectorPE') else None,
|
233 |
-
'revenueGrowth': float(info.get('revenueGrowth', 0)),
|
234 |
-
'profitMargins': float(info.get('profitMargins', 0)),
|
235 |
-
'debtToEquity': float(info.get('debtToEquity', 0))
|
236 |
-
}
|
237 |
-
except Exception as e:
|
238 |
-
print(f"Error while performing the fundamental analysis: {e}")
|
239 |
-
return {}
|
240 |
-
# 7.2 Method for getting the news
|
241 |
-
def get_news(self, ticker, api_key=None, fetch_new=True):
|
242 |
-
if fetch_new and api_key:
|
243 |
-
try:
|
244 |
-
newsapi = NewsApiClient(api_key=api_key)
|
245 |
-
from_date = (datetime.now() - timedelta(days=5)).strftime('%Y-%m-%d')
|
246 |
-
news = newsapi.get_everything(q=ticker, from_param=from_date, language='en', sort_by='relevancy')
|
247 |
-
articles = news['articles']
|
248 |
-
save_data(ticker, 'news', articles)
|
249 |
-
return articles
|
250 |
-
except Exception as e:
|
251 |
-
print(f"Error while fetching information online: {e}")
|
252 |
-
return self._get_news_from_db(ticker)
|
253 |
-
else:
|
254 |
-
return self._get_news_from_db(ticker)
|
255 |
-
# 7.3 Method for getting the news from the database
|
256 |
-
def _get_news_from_db(self, ticker):
|
257 |
-
session = Session()
|
258 |
-
try:
|
259 |
-
news_records = session.query(CompanyData).filter(
|
260 |
-
CompanyData.ticker == ticker,
|
261 |
-
CompanyData.data_type == 'news'
|
262 |
-
).order_by(CompanyData.date.desc()).all()
|
263 |
-
|
264 |
-
news = []
|
265 |
-
for record in news_records:
|
266 |
-
if isinstance(record.data, list):
|
267 |
-
news.extend(record.data)
|
268 |
-
elif isinstance(record.data, dict):
|
269 |
-
news.append(record.data)
|
270 |
-
return news[-5:] # Últimas 5 notícias
|
271 |
-
except Exception as e:
|
272 |
-
print(f"Error to fetch information from the local database: {e}")
|
273 |
-
return []
|
274 |
-
finally:
|
275 |
-
session.close()
|
276 |
-
# 7.4 Method for analyzing the sentiment
|
277 |
-
def analyze_sentiment(self, news):
|
278 |
-
try:
|
279 |
-
if not news:
|
280 |
-
return {
|
281 |
-
'sentiment': {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33},
|
282 |
-
'confidence': 0.5
|
283 |
-
}
|
284 |
-
|
285 |
-
sentiment_scores = []
|
286 |
-
for item in news:
|
287 |
-
text = f"{item.get('title', '')} {item.get('description', '')}".strip()
|
288 |
-
if not text:
|
289 |
-
continue
|
290 |
-
|
291 |
-
inputs = self.analyst.tokenizers['financial_sentiment'](text, return_tensors="pt", truncation=True, max_length=512)
|
292 |
-
outputs = self.analyst.models['financial_sentiment'](**inputs)
|
293 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
294 |
-
sentiment_scores.append(probabilities.detach().numpy()[0])
|
295 |
-
|
296 |
-
if not sentiment_scores:
|
297 |
-
return {
|
298 |
-
'sentiment': {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33},
|
299 |
-
'confidence': 0.5
|
300 |
-
}
|
301 |
-
|
302 |
-
avg_sentiment = np.mean(sentiment_scores, axis=0)
|
303 |
-
labels = ["negative", "neutral", "positive"]
|
304 |
-
sentiment = {labels[i]: float(avg_sentiment[i]) for i in range(3)}
|
305 |
-
|
306 |
-
return {
|
307 |
-
'sentiment': sentiment,
|
308 |
-
'confidence': max(sentiment.values())
|
309 |
-
}
|
310 |
-
except Exception as e:
|
311 |
-
print(f"Error while sentimental analysis: {e}")
|
312 |
-
return {
|
313 |
-
'sentiment': {'negative': 0.33, 'neutral': 0.33, 'positive': 0.33},
|
314 |
-
'confidence': 0.5
|
315 |
-
}
|
316 |
-
# 7.5 Method for analyzing the company
|
317 |
def analyze_company(self, ticker, news_api_key=None, fetch_new=True):
|
318 |
try:
|
319 |
-
#
|
320 |
-
fundamental =
|
321 |
-
if fetch_new:
|
322 |
-
save_data(ticker, 'financials', fundamental)
|
323 |
-
|
324 |
-
# Collicting news
|
325 |
-
news = self.get_news(ticker, news_api_key, fetch_new)
|
326 |
|
327 |
-
|
328 |
-
technical = technical_analysis(ticker)
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
if not fundamental or not news or technical is None:
|
331 |
-
print(f"
|
332 |
return None
|
333 |
-
|
334 |
# Sentiment analysis
|
335 |
-
sentiment =
|
336 |
-
|
337 |
# Confidence calculation
|
338 |
confidence = self.confidence_calc.calculate(
|
339 |
-
sentiment,
|
340 |
-
technical,
|
341 |
self._prepare_fundamental(fundamental)
|
342 |
)
|
343 |
-
|
344 |
-
#
|
345 |
recommendation = self.generate_recommendation(
|
346 |
sentiment, technical, fundamental, confidence
|
347 |
)
|
348 |
-
|
349 |
return {
|
350 |
'recommendation': recommendation,
|
351 |
'confidence': confidence,
|
@@ -353,326 +153,96 @@ class AnalysisPipeline:
|
|
353 |
'fundamental': fundamental,
|
354 |
'sentiment': sentiment
|
355 |
}
|
356 |
-
|
357 |
except Exception as e:
|
358 |
-
print(f"
|
359 |
return None
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
def _prepare_fundamental(self, fundamental):
|
362 |
return {
|
363 |
'pe_ratio': fundamental.get('trailingPE', 0),
|
364 |
-
'sector_pe': fundamental.get('sectorPE'),
|
365 |
'revenue_growth': fundamental.get('revenueGrowth', 0)
|
366 |
}
|
367 |
-
|
368 |
def generate_recommendation(self, sentiment, technical, fundamental, confidence):
|
369 |
pe_ratio = fundamental.get('trailingPE', 0)
|
370 |
sector_pe = fundamental.get('sectorPE')
|
371 |
-
|
372 |
-
# Low confidence condition - NEUTRAL
|
373 |
if confidence['total_confidence'] < 0.4:
|
374 |
return 'NEUTRAL'
|
375 |
-
|
376 |
-
# Rules based on fundamental analysis
|
377 |
if sector_pe is not None and sector_pe > 0:
|
378 |
if pe_ratio < sector_pe * 0.7:
|
379 |
return 'BUY'
|
380 |
elif pe_ratio > sector_pe * 1.3:
|
381 |
return 'SELL'
|
382 |
-
|
383 |
-
|
384 |
-
if confidence['total_confidence'] > self.confidence_threshold and sentiment['sentiment']['positive'] > self.sentiment_threshold:
|
385 |
return 'BUY'
|
386 |
-
|
387 |
-
# Fallback based on technical analysis
|
388 |
if technical and 'trend' in technical:
|
389 |
return 'HOLD' if technical['trend'] == 'bullish' else 'SELL'
|
390 |
-
|
391 |
-
# Final fallback
|
392 |
-
return 'NEUTRAL'
|
393 |
-
|
394 |
-
class BacktraderIntegration:
|
395 |
-
def __init__(self, analysis_result=None, strategy_params=None):
|
396 |
-
self.cerebro = bt.Cerebro()
|
397 |
-
self.analysis = analysis_result
|
398 |
-
self.strategy_params = strategy_params or {}
|
399 |
-
self.setup_environment()
|
400 |
-
|
401 |
-
def setup_environment(self):
|
402 |
-
# Basic configuration of the broker
|
403 |
-
self.cerebro.broker.setcash(100000.0) # Valor padrão será atualizado
|
404 |
-
self.cerebro.broker.setcommission(commission=0.001)
|
405 |
-
|
406 |
-
# Custom Strategy
|
407 |
-
if self.analysis:
|
408 |
-
self.cerebro.addstrategy(self.CustomStrategy, analysis=self.analysis, **self.strategy_params)
|
409 |
-
else:
|
410 |
-
self.cerebro.addstrategy(self.CustomStrategy)
|
411 |
-
|
412 |
-
def add_data_feed(self, ticker, start_date, end_date):
|
413 |
-
# Convert datetime to string
|
414 |
-
start_str = start_date.strftime("%Y-%m-%d")
|
415 |
-
end_str = end_date.strftime("%Y-%m-%d")
|
416 |
-
|
417 |
-
# Download data from Yahoo Finance
|
418 |
-
df = yf.download(ticker, start=start_str, end=end_str, progress=False)
|
419 |
-
|
420 |
-
# adjust the columns
|
421 |
-
if isinstance(df.columns, pd.MultiIndex):
|
422 |
-
df.columns = df.columns.droplevel(1) # remove the multi-index
|
423 |
-
|
424 |
-
# minimum columns expected
|
425 |
-
expected_columns = ["Open", "High", "Low", "Close", "Volume"]
|
426 |
|
427 |
-
|
428 |
-
if not all(col in df.columns for col in expected_columns):
|
429 |
-
raise ValueError(f"Colunas do DataFrame incorretas: {df.columns}")
|
430 |
-
|
431 |
-
# Creates the data feed
|
432 |
-
data = bt.feeds.PandasData(dataname=df)
|
433 |
-
self.cerebro.adddata(data)
|
434 |
-
|
435 |
-
# 7.8 Method for running the simulation
|
436 |
-
def run_simulation(self, initial_cash, commission):
|
437 |
-
self.cerebro.broker.setcash(initial_cash)
|
438 |
-
self.cerebro.broker.setcommission(commission=commission)
|
439 |
-
print(f'\nStarting Portfolio Value: {self.cerebro.broker.getvalue():.2f}')
|
440 |
-
self.cerebro.run()
|
441 |
-
|
442 |
-
# Coletar logs de todas as estratégias
|
443 |
-
operation_logs = []
|
444 |
-
for strategy in self.cerebro.runstrats:
|
445 |
-
operation_logs.extend(strategy[0].operation_logs)
|
446 |
-
|
447 |
-
print(f'Final Portfolio Value: {self.cerebro.broker.getvalue():.2f}')
|
448 |
-
return self.cerebro.broker.getvalue(), operation_logs # Retorna ambos valores
|
449 |
-
# 7.9 Custom Strategy
|
450 |
-
class CustomStrategy(bt.Strategy):
|
451 |
-
params = (
|
452 |
-
('analysis', None),
|
453 |
-
('rsi_period', 14),
|
454 |
-
('rsi_upper', 70),
|
455 |
-
('rsi_lower', 30),
|
456 |
-
('sma_short', 50),
|
457 |
-
('sma_long', 200),
|
458 |
-
('max_loss_percent', 0.02),
|
459 |
-
('take_profit_percent', 0.05),
|
460 |
-
('position_size', 0.1),
|
461 |
-
('atr_period', 14),
|
462 |
-
('atr_multiplier', 3),
|
463 |
-
('sentiment_threshold', 0.6), # Novo parâmetro
|
464 |
-
('confidence_threshold', 0.7) # Novo parâmetro
|
465 |
-
)
|
466 |
-
|
467 |
-
def __init__(self):
|
468 |
-
# Parâmetros agora são acessados via self.params
|
469 |
-
self.operation_logs = [] # Lista para armazenar os logs
|
470 |
-
self.recommendation = self.params.analysis['recommendation'] if self.params.analysis else 'HOLD'
|
471 |
-
self.technical_analysis = self.params.analysis['technical'] if self.params.analysis else None
|
472 |
-
self.sentiment_analysis = self.params.analysis['sentiment'] if self.params.analysis else None
|
473 |
-
self.confidence = self.params.analysis['confidence']['total_confidence'] if self.params.analysis else 0.5
|
474 |
-
|
475 |
-
# Indicadores usando parâmetros dinâmicos
|
476 |
-
self.rsi = bt.indicators.RSI(
|
477 |
-
self.data.close,
|
478 |
-
period=self.params.rsi_period
|
479 |
-
)
|
480 |
-
|
481 |
-
self.sma_short = bt.indicators.SMA(
|
482 |
-
self.data.close,
|
483 |
-
period=self.params.sma_short
|
484 |
-
)
|
485 |
-
|
486 |
-
self.sma_long = bt.indicators.SMA(
|
487 |
-
self.data.close,
|
488 |
-
period=self.params.sma_long
|
489 |
-
)
|
490 |
-
|
491 |
-
|
492 |
-
# Technical Indicators
|
493 |
-
self.rsi = bt.indicators.RSI(self.data.close, period=self.p.rsi_period)
|
494 |
-
self.sma_short = bt.indicators.SMA(self.data.close, period=self.p.sma_short)
|
495 |
-
self.sma_long = bt.indicators.SMA(self.data.close, period=self.p.sma_long)
|
496 |
-
|
497 |
-
# Volatility Indicator
|
498 |
-
self.atr = bt.indicators.ATR(self.data, period=self.p.atr_period)
|
499 |
-
|
500 |
-
# Trading management
|
501 |
-
self.order = None
|
502 |
-
self.stop_price = None
|
503 |
-
self.take_profit_price = None
|
504 |
-
self.buy_price = None
|
505 |
-
self.entry_date = None
|
506 |
-
|
507 |
-
|
508 |
-
def log(self, txt, dt=None):
|
509 |
-
dt = dt or self.datas[0].datetime.date(0)
|
510 |
-
log_entry = f'{dt.isoformat()}, {txt}'
|
511 |
-
self.operation_logs.append(log_entry) # Armazena na lista
|
512 |
-
print(log_entry) # Mantém o print original
|
513 |
-
|
514 |
-
def notify_order(self, order):
|
515 |
-
if order.status in [order.Submitted, order.Accepted]:
|
516 |
-
return
|
517 |
-
|
518 |
-
if order.status in [order.Completed]:
|
519 |
-
if order.isbuy():
|
520 |
-
self.log(f'BUY EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
|
521 |
-
self.buy_price = order.executed.price
|
522 |
-
self.entry_date = self.datas[0].datetime.date(0)
|
523 |
-
else:
|
524 |
-
self.log(f'SELL EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
|
525 |
-
|
526 |
-
self.order = None
|
527 |
-
|
528 |
-
def notify_trade(self, trade):
|
529 |
-
if not trade.isclosed:
|
530 |
-
return
|
531 |
-
|
532 |
-
self.log(f'TRADE PROFIT, GROSS: {trade.pnl:.2f}, NET: {trade.pnlcomm:.2f}')
|
533 |
-
|
534 |
-
def calculate_position_size(self):
|
535 |
-
portfolio_value = self.broker.getvalue()
|
536 |
-
return int((portfolio_value * self.p.position_size) / self.data.close[0])
|
537 |
-
|
538 |
-
def next(self):
|
539 |
-
# Prevent multiple orders
|
540 |
-
if self.order:
|
541 |
-
return
|
542 |
-
|
543 |
-
current_price = self.data.close[0]
|
544 |
-
portfolio_value = self.broker.getvalue()
|
545 |
-
|
546 |
-
# Usar parâmetros dinâmicos nas regras
|
547 |
-
stop_loss = current_price * (1 - self.params.max_loss_percent)
|
548 |
-
take_profit = current_price * (1 + self.params.take_profit_percent)
|
549 |
-
|
550 |
-
# Analyze prior analysis for additional confirmation
|
551 |
-
analysis_confirmation = self._analyze_prior_research()
|
552 |
-
|
553 |
-
# No open position - look for entry
|
554 |
-
if not self.position:
|
555 |
-
# Enhanced entry conditions
|
556 |
-
# Condições com parâmetros ajustáveis
|
557 |
-
entry_conditions = (
|
558 |
-
current_price > self.sma_long[0] and
|
559 |
-
self.rsi[0] < self.params.rsi_lower and
|
560 |
-
bool(self.params.analysis['confidence']['total_confidence'] > self.p.confidence_threshold)
|
561 |
-
)
|
562 |
-
|
563 |
-
if entry_conditions:
|
564 |
-
# Calculate position size
|
565 |
-
size = self.calculate_position_size()
|
566 |
-
|
567 |
-
# Place buy order
|
568 |
-
self.order = self.buy(size=size)
|
569 |
-
|
570 |
-
# Calculate stop loss and take profit
|
571 |
-
stop_loss = current_price * (1 - self.p.max_loss_percent)
|
572 |
-
take_profit = current_price * (1 + self.p.take_profit_percent)
|
573 |
-
|
574 |
-
# Alternative stop loss using ATR for volatility
|
575 |
-
atr_stop = current_price - (self.atr[0] * self.p.atr_multiplier)
|
576 |
-
self.stop_price = max(stop_loss, atr_stop)
|
577 |
-
self.take_profit_price = take_profit
|
578 |
-
|
579 |
-
# Manage existing position
|
580 |
-
else:
|
581 |
-
# Exit conditions
|
582 |
-
exit_conditions = (
|
583 |
-
current_price < self.stop_price or # Stop loss triggered
|
584 |
-
current_price > self.take_profit_price or # Take profit reached
|
585 |
-
self.rsi[0] > self.p.rsi_upper or # Overbought condition
|
586 |
-
current_price < self.sma_short[0] or # Trend change
|
587 |
-
not analysis_confirmation # Loss of analysis confirmation
|
588 |
-
)
|
589 |
-
|
590 |
-
if exit_conditions:
|
591 |
-
self.close() # Close entire position
|
592 |
-
self.stop_price = None
|
593 |
-
self.take_profit_price = None
|
594 |
-
|
595 |
-
def _analyze_prior_research(self):
|
596 |
-
# Integrate multiple analysis aspects
|
597 |
-
if not self.p.analysis:
|
598 |
-
return True
|
599 |
-
|
600 |
-
# Sentiment analysis check
|
601 |
-
sentiment_positive = (
|
602 |
-
self.sentiment_analysis and
|
603 |
-
self.sentiment_analysis['sentiment']['positive'] > self.p.sentiment_threshold
|
604 |
-
)
|
605 |
-
|
606 |
-
# Technical analysis check
|
607 |
-
technical_bullish = (
|
608 |
-
self.technical_analysis and
|
609 |
-
self.technical_analysis['trend'] == 'bullish'
|
610 |
-
)
|
611 |
|
612 |
-
|
613 |
-
|
|
|
614 |
|
615 |
-
|
616 |
-
|
617 |
|
618 |
-
|
619 |
-
|
620 |
-
self.log('Final Portfolio Value: %.2f' % self.broker.getvalue())
|
621 |
|
622 |
-
|
623 |
-
if __name__ == "__main__":
|
624 |
-
pipeline = AnalysisPipeline()
|
625 |
-
|
626 |
-
print("\n=== Analysis of Stock-Market ===")
|
627 |
-
|
628 |
-
# 1. Requesting the company ticker
|
629 |
-
ticker = input("Type the company ticker (ex: AAPL): ").strip().upper()
|
630 |
-
|
631 |
-
# 2. Requesting if the user wants to fetch new data
|
632 |
-
while True:
|
633 |
-
fetch_new = input("Would you like to have new data from internet? (y/n): ").lower()
|
634 |
-
if fetch_new in ['y', 'n', 'yes', 'no', 'no']:
|
635 |
-
fetch_new_bool = fetch_new in ['y', 'no']
|
636 |
-
break
|
637 |
-
print("Not a valid option! Type y or n")
|
638 |
-
|
639 |
-
initial_investment = float(input("Inicial Investment (USD): "))
|
640 |
years_back = int(input("Historical Period (years): "))
|
641 |
commission = float(input("Commission per trade: "))
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
# 4. Running the analysis
|
647 |
-
print(f"\nRunning the analysis with Machine Learning {ticker}...")
|
648 |
result = pipeline.analyze_company(
|
649 |
ticker=ticker,
|
650 |
news_api_key=news_api_key if news_api_key else None,
|
651 |
fetch_new=fetch_new_bool
|
652 |
)
|
653 |
-
|
654 |
-
# 5. Showing the results
|
655 |
if result:
|
656 |
-
|
657 |
-
# Running the simulation with Backtrader
|
658 |
end_date = datetime.now()
|
659 |
-
start_date = end_date - timedelta(days=years_back*365)
|
660 |
-
|
661 |
bt_integration = BacktraderIntegration(result)
|
662 |
bt_integration.add_data_feed(ticker, start_date, end_date)
|
663 |
final_value = bt_integration.run_simulation(initial_investment, commission)
|
664 |
-
|
665 |
print("\n=== Analysis Result ===")
|
666 |
print(f"Recommendation: {result['recommendation']}")
|
667 |
print(f"Confidence: {result['confidence']['total_confidence']:.2%}")
|
668 |
-
print(f"Return
|
669 |
print("\nDetails:")
|
670 |
-
print(f"1. Sentiment: {json.dumps(result['sentiment']
|
671 |
print(f"2. Technical Analysis: RSI {result['technical']['rsi']:.1f}, Price vs SMA50: {result['technical']['price_vs_sma']:.2%}")
|
672 |
-
print(f"3. Fundamental: P/E {result['fundamental'].get('trailingPE', 'N/A')} vs
|
673 |
print(f"4. Confidence Components: {json.dumps(result['confidence']['components'], indent=2)}")
|
674 |
else:
|
675 |
-
print("\
|
676 |
print("- Internet connection")
|
677 |
-
print("- Ticker
|
678 |
-
print("-
|
|
|
1 |
+
# stocks.py
|
2 |
+
from datetime import datetime, timedelta
|
3 |
import numpy as np
|
|
|
4 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from functools import lru_cache
|
6 |
|
7 |
+
# Importações dos novos módulos
|
8 |
+
from data.database import DatabaseManager
|
9 |
+
from data.api_client import NewsAPIClient
|
10 |
+
from analysis.technical import TechnicalAnalyzer
|
11 |
+
from analysis.fundamental import FundamentalAnalyzer
|
12 |
+
from analysis.sentiment import SentimentAnalyzer
|
13 |
+
from strategies.backtrader import BacktraderIntegration
|
14 |
|
15 |
+
# Database configuration
|
16 |
+
db_manager = DatabaseManager()
|
|
|
|
|
17 |
|
18 |
+
# Analyzers configuration
|
19 |
+
technical_analyzer = TechnicalAnalyzer()
|
20 |
+
fundamental_analyzer = FundamentalAnalyzer()
|
21 |
+
sentiment_analyzer = SentimentAnalyzer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Confidence calculator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
class ConfidenceCalculator:
|
25 |
def __init__(self):
|
26 |
self.weights = {
|
|
|
28 |
'technical': 0.3,
|
29 |
'fundamental': 0.3
|
30 |
}
|
31 |
+
|
32 |
def calculate(self, sentiment, technical, fundamental):
|
33 |
+
sentiment_score = self._normalie_sentiment(sentiment)
|
34 |
technical_score = self._normalize_technical(technical)
|
35 |
fundamental_score = self._normalize_fundamental(fundamental)
|
36 |
+
|
37 |
weighted_score = (
|
38 |
sentiment_score * self.weights['sentiment'] +
|
39 |
technical_score * self.weights['technical'] +
|
40 |
fundamental_score * self.weights['fundamental']
|
41 |
)
|
42 |
+
|
43 |
return {
|
44 |
'total_confidence': weighted_score,
|
45 |
'components': {
|
|
|
48 |
'fundamental': fundamental_score
|
49 |
}
|
50 |
}
|
51 |
+
|
52 |
+
def _normalie_sentiment(self, sentiment):
|
53 |
+
"""
|
54 |
+
Normaliza o sentimento em um único score de confiança.
|
55 |
+
|
56 |
+
Parâmetros:
|
57 |
+
sentiment (dict): {'negative': float, 'neutral': float, 'positive': float}
|
58 |
+
|
59 |
+
Retorno:
|
60 |
+
float: score normalizado entre 0 e 1.
|
61 |
+
"""
|
62 |
+
# Definição dos pesos para cada categoria
|
63 |
+
weight_positive = 1.0 # Sentimento positivo contribui mais
|
64 |
+
weight_neutral = 0.5 # Neutro tem impacto médio
|
65 |
+
weight_negative = 0.0 # Negativo reduz a confiança
|
66 |
+
|
67 |
+
# Cálculo do score ponderado
|
68 |
+
sentiment_score = (
|
69 |
+
sentiment['positive'] * weight_positive +
|
70 |
+
sentiment['neutral'] * weight_neutral +
|
71 |
+
sentiment['negative'] * weight_negative
|
72 |
+
)
|
73 |
+
|
74 |
+
# Garantindo que o score fique entre 0 e 1
|
75 |
+
return max(0.0, min(1.0, sentiment_score))
|
76 |
+
|
77 |
+
|
78 |
def _normalize_technical(self, tech):
|
79 |
if tech is None:
|
80 |
return 0.5
|
81 |
+
rsi_score = 1 - abs(tech['rsi'] - 50) / 50
|
82 |
price_score = np.tanh(tech['price_vs_sma'] * 100)
|
83 |
+
return 0.6 * rsi_score + 0.4 * price_score
|
84 |
+
|
85 |
def _normalize_fundamental(self, fund):
|
86 |
if not fund:
|
87 |
return 0.5
|
88 |
+
|
89 |
pe_ratio = fund.get('pe_ratio', 0)
|
90 |
sector_pe = fund.get('sector_pe')
|
91 |
revenue_growth = fund.get('revenue_growth', 0)
|
92 |
+
|
|
|
93 |
if sector_pe is None:
|
94 |
+
pe_score = 0.5
|
95 |
else:
|
96 |
pe_score = 1 if pe_ratio < sector_pe else 0.5
|
97 |
+
|
98 |
growth_score = min(revenue_growth / 20, 1)
|
|
|
99 |
return 0.5 * pe_score + 0.5 * growth_score
|
100 |
|
101 |
+
# Analysis pipeline
|
102 |
class AnalysisPipeline:
|
103 |
def __init__(self, sentiment_threshold=0.6, confidence_threshold=0.7):
|
|
|
104 |
self.confidence_calc = ConfidenceCalculator()
|
105 |
+
self.sentiment_threshold = sentiment_threshold
|
106 |
+
self.confidence_threshold = confidence_threshold
|
107 |
+
|
108 |
def set_sentiment_threshold(self, sentiment_threshold):
|
109 |
self.sentiment_threshold = sentiment_threshold
|
110 |
|
111 |
def set_confidence_threshold(self, confidence_threshold):
|
112 |
self.confidence_threshold = confidence_threshold
|
113 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def analyze_company(self, ticker, news_api_key=None, fetch_new=True):
|
115 |
try:
|
116 |
+
# fundamental analysis
|
117 |
+
fundamental = fundamental_analyzer.analyze(ticker)
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
shortName = fundamental['shortName'].split()[0]
|
|
|
120 |
|
121 |
+
if fetch_new:
|
122 |
+
db_manager.save_data(ticker, 'financials', fundamental)
|
123 |
+
|
124 |
+
# collecting last news
|
125 |
+
news = self._get_news(shortName, ticker, news_api_key, fetch_new)
|
126 |
+
|
127 |
+
# technical analysis
|
128 |
+
technical = technical_analyzer.analyze(ticker)
|
129 |
+
|
130 |
if not fundamental or not news or technical is None:
|
131 |
+
print(f"Insufficient data for: {ticker}")
|
132 |
return None
|
133 |
+
|
134 |
# Sentiment analysis
|
135 |
+
sentiment = sentiment_analyzer.analyze(news)
|
136 |
+
|
137 |
# Confidence calculation
|
138 |
confidence = self.confidence_calc.calculate(
|
139 |
+
sentiment,
|
140 |
+
technical,
|
141 |
self._prepare_fundamental(fundamental)
|
142 |
)
|
143 |
+
|
144 |
+
# Recommendation generation
|
145 |
recommendation = self.generate_recommendation(
|
146 |
sentiment, technical, fundamental, confidence
|
147 |
)
|
148 |
+
|
149 |
return {
|
150 |
'recommendation': recommendation,
|
151 |
'confidence': confidence,
|
|
|
153 |
'fundamental': fundamental,
|
154 |
'sentiment': sentiment
|
155 |
}
|
156 |
+
|
157 |
except Exception as e:
|
158 |
+
print(f"Error in analysis: {e}")
|
159 |
return None
|
160 |
+
|
161 |
+
def _get_news(self, shortName, ticker, api_key, fetch_new):
|
162 |
+
if fetch_new and api_key:
|
163 |
+
try:
|
164 |
+
news_client = NewsAPIClient(api_key)
|
165 |
+
articles = news_client.get_news(shortName)
|
166 |
+
|
167 |
+
# Flatten the list of articles
|
168 |
+
db_manager.save_data(ticker, 'news', articles)
|
169 |
+
return articles
|
170 |
+
except Exception as e:
|
171 |
+
print(f"Error fetching news: {e}")
|
172 |
+
return db_manager.get_historical_data(ticker)['news']
|
173 |
+
else:
|
174 |
+
return db_manager.get_historical_data(ticker)['news']
|
175 |
+
|
176 |
def _prepare_fundamental(self, fundamental):
|
177 |
return {
|
178 |
'pe_ratio': fundamental.get('trailingPE', 0),
|
179 |
+
'sector_pe': fundamental.get('sectorPE'),
|
180 |
'revenue_growth': fundamental.get('revenueGrowth', 0)
|
181 |
}
|
182 |
+
|
183 |
def generate_recommendation(self, sentiment, technical, fundamental, confidence):
|
184 |
pe_ratio = fundamental.get('trailingPE', 0)
|
185 |
sector_pe = fundamental.get('sectorPE')
|
186 |
+
|
|
|
187 |
if confidence['total_confidence'] < 0.4:
|
188 |
return 'NEUTRAL'
|
189 |
+
|
|
|
190 |
if sector_pe is not None and sector_pe > 0:
|
191 |
if pe_ratio < sector_pe * 0.7:
|
192 |
return 'BUY'
|
193 |
elif pe_ratio > sector_pe * 1.3:
|
194 |
return 'SELL'
|
195 |
+
|
196 |
+
if confidence['total_confidence'] > self.confidence_threshold and sentiment['positive'] > self.sentiment_threshold:
|
|
|
197 |
return 'BUY'
|
198 |
+
|
|
|
199 |
if technical and 'trend' in technical:
|
200 |
return 'HOLD' if technical['trend'] == 'bullish' else 'SELL'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
return 'NEUTRAL'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
# Main function
|
205 |
+
if __name__ == "__main__":
|
206 |
+
pipeline = AnalysisPipeline()
|
207 |
|
208 |
+
print("\n=== Stock Market Analysis ===")
|
209 |
+
ticker = input("Enter the company ticker (e.g., AAPL): ").strip().upper()
|
210 |
|
211 |
+
fetch_new = input("Fetch new data from the internet? (y/n): ").lower()
|
212 |
+
fetch_new_bool = fetch_new in ['y', 'yes']
|
|
|
213 |
|
214 |
+
initial_investment = float(input("Initial Investment (USD): "))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
years_back = int(input("Historical Period (years): "))
|
216 |
commission = float(input("Commission per trade: "))
|
217 |
+
|
218 |
+
news_api_key = 'YOUR_NEWSAPI_KEY_HERE'
|
219 |
+
|
220 |
+
print(f"\nRunning analysis for {ticker}...")
|
|
|
|
|
221 |
result = pipeline.analyze_company(
|
222 |
ticker=ticker,
|
223 |
news_api_key=news_api_key if news_api_key else None,
|
224 |
fetch_new=fetch_new_bool
|
225 |
)
|
226 |
+
|
|
|
227 |
if result:
|
|
|
|
|
228 |
end_date = datetime.now()
|
229 |
+
start_date = end_date - timedelta(days=years_back * 365)
|
230 |
+
|
231 |
bt_integration = BacktraderIntegration(result)
|
232 |
bt_integration.add_data_feed(ticker, start_date, end_date)
|
233 |
final_value = bt_integration.run_simulation(initial_investment, commission)
|
234 |
+
|
235 |
print("\n=== Analysis Result ===")
|
236 |
print(f"Recommendation: {result['recommendation']}")
|
237 |
print(f"Confidence: {result['confidence']['total_confidence']:.2%}")
|
238 |
+
print(f"Simulation Return: {(final_value / initial_investment - 1) * 100:.2f}%")
|
239 |
print("\nDetails:")
|
240 |
+
print(f"1. Sentiment: {json.dumps(result['sentiment'], indent=2)}")
|
241 |
print(f"2. Technical Analysis: RSI {result['technical']['rsi']:.1f}, Price vs SMA50: {result['technical']['price_vs_sma']:.2%}")
|
242 |
+
print(f"3. Fundamental: P/E {result['fundamental'].get('trailingPE', 'N/A')} vs Sector {result['fundamental'].get('sectorPE', 'N/A')}")
|
243 |
print(f"4. Confidence Components: {json.dumps(result['confidence']['components'], indent=2)}")
|
244 |
else:
|
245 |
+
print("\nUnable to complete analysis. Please check:")
|
246 |
print("- Internet connection")
|
247 |
+
print("- Ticker symbol")
|
248 |
+
print("- Availability of historical data")
|
strategies/__pycache__/backtrader.cpython-311.pyc
ADDED
Binary file (13 kB). View file
|
|
strategies/backtrader.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# strategies/backtrader.py
|
2 |
+
import backtrader as bt
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
8 |
+
from data.api_client import YahooFinanceClient
|
9 |
+
|
10 |
+
|
11 |
+
class Logger:
|
12 |
+
def __init__(self):
|
13 |
+
self.logs = []
|
14 |
+
|
15 |
+
def add_log(self, log_entry):
|
16 |
+
self.logs.append(log_entry)
|
17 |
+
|
18 |
+
def get_logs(self):
|
19 |
+
return self.logs.copy() # Return a copy to prevent direct modification
|
20 |
+
|
21 |
+
class CustomStrategy(bt.Strategy):
|
22 |
+
params = (
|
23 |
+
('analysis', None),
|
24 |
+
('logger', None),
|
25 |
+
('rsi_period', 14),
|
26 |
+
('rsi_upper', 70),
|
27 |
+
('rsi_lower', 30),
|
28 |
+
('sma_short', 50),
|
29 |
+
('sma_long', 200),
|
30 |
+
('max_loss_percent', 0.02),
|
31 |
+
('take_profit_percent', 0.05),
|
32 |
+
('position_size', 0.1),
|
33 |
+
('atr_period', 14),
|
34 |
+
('atr_multiplier', 3),
|
35 |
+
('sentiment_threshold', 0.6), # Novo parâmetro
|
36 |
+
('confidence_threshold', 0.7) # Novo parâmetro
|
37 |
+
)
|
38 |
+
|
39 |
+
def __init__(self):
|
40 |
+
# Parâmetros agora são acessados via self.params
|
41 |
+
self.logger = self.params.logger
|
42 |
+
self.recommendation = self.params.analysis['recommendation'] if self.params.analysis else 'HOLD'
|
43 |
+
self.technical_analysis = self.params.analysis['technical'] if self.params.analysis else None
|
44 |
+
self.sentiment_analysis = self.params.analysis['sentiment'] if self.params.analysis else None
|
45 |
+
self.confidence = self.params.analysis['confidence']['total_confidence'] if self.params.analysis else 0.5
|
46 |
+
|
47 |
+
# Indicadores usando parâmetros dinâmicos
|
48 |
+
self.rsi = bt.indicators.RSI(
|
49 |
+
self.data.close,
|
50 |
+
period=self.params.rsi_period
|
51 |
+
)
|
52 |
+
|
53 |
+
self.sma_short = bt.indicators.SMA(
|
54 |
+
self.data.close,
|
55 |
+
period=self.params.sma_short
|
56 |
+
)
|
57 |
+
|
58 |
+
self.sma_long = bt.indicators.SMA(
|
59 |
+
self.data.close,
|
60 |
+
period=self.params.sma_long
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
# Technical Indicators
|
65 |
+
self.rsi = bt.indicators.RSI(self.data.close, period=self.p.rsi_period)
|
66 |
+
self.sma_short = bt.indicators.SMA(self.data.close, period=self.p.sma_short)
|
67 |
+
self.sma_long = bt.indicators.SMA(self.data.close, period=self.p.sma_long)
|
68 |
+
|
69 |
+
# Volatility Indicator
|
70 |
+
self.atr = bt.indicators.ATR(self.data, period=self.p.atr_period)
|
71 |
+
|
72 |
+
# Trading management
|
73 |
+
self.order = None
|
74 |
+
self.stop_price = None
|
75 |
+
self.take_profit_price = None
|
76 |
+
self.buy_price = None
|
77 |
+
self.entry_date = None
|
78 |
+
|
79 |
+
def log(self, txt, dt=None):
|
80 |
+
dt = dt or self.datas[0].datetime.date(0)
|
81 |
+
log_entry = f'{dt.isoformat()}, {txt}'
|
82 |
+
self.logger.add_log(log_entry) # Store in shared logger
|
83 |
+
print(log_entry)
|
84 |
+
|
85 |
+
def notify_order(self, order):
|
86 |
+
if order.status in [order.Submitted, order.Accepted]:
|
87 |
+
return
|
88 |
+
|
89 |
+
if order.status in [order.Completed]:
|
90 |
+
if order.isbuy():
|
91 |
+
self.log(f'BUY EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
|
92 |
+
self.buy_price = order.executed.price
|
93 |
+
self.entry_date = self.datas[0].datetime.date(0)
|
94 |
+
else:
|
95 |
+
self.log(f'SELL EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
|
96 |
+
|
97 |
+
self.order = None
|
98 |
+
|
99 |
+
def notify_trade(self, trade):
|
100 |
+
if not trade.isclosed:
|
101 |
+
return
|
102 |
+
|
103 |
+
self.log(f'TRADE PROFIT, GROSS: {trade.pnl:.2f}, NET: {trade.pnlcomm:.2f}')
|
104 |
+
|
105 |
+
def calculate_position_size(self):
|
106 |
+
portfolio_value = self.broker.getvalue()
|
107 |
+
return int((portfolio_value * self.p.position_size) / self.data.close[0])
|
108 |
+
|
109 |
+
def next(self):
|
110 |
+
# Prevent multiple orders
|
111 |
+
if self.order:
|
112 |
+
return
|
113 |
+
|
114 |
+
current_price = self.data.close[0]
|
115 |
+
|
116 |
+
# Usar parâmetros dinâmicos nas regras
|
117 |
+
stop_loss = current_price * (1 - self.params.max_loss_percent)
|
118 |
+
take_profit = current_price * (1 + self.params.take_profit_percent)
|
119 |
+
|
120 |
+
# Analyze prior analysis for additional confirmation
|
121 |
+
analysis_confirmation = self._analyze_prior_research()
|
122 |
+
|
123 |
+
# No open position - look for entry
|
124 |
+
if not self.position:
|
125 |
+
# Enhanced entry conditions
|
126 |
+
# Condições com parâmetros ajustáveis
|
127 |
+
entry_conditions = (
|
128 |
+
current_price > self.sma_long[0] and
|
129 |
+
self.rsi[0] < self.params.rsi_lower and
|
130 |
+
bool(self.params.analysis['confidence']['total_confidence'] > self.p.confidence_threshold)
|
131 |
+
)
|
132 |
+
|
133 |
+
if entry_conditions:
|
134 |
+
# Calculate position size
|
135 |
+
size = self.calculate_position_size()
|
136 |
+
|
137 |
+
# Place buy order
|
138 |
+
self.order = self.buy(size=size)
|
139 |
+
|
140 |
+
# Calculate stop loss and take profit
|
141 |
+
stop_loss = current_price * (1 - self.p.max_loss_percent)
|
142 |
+
take_profit = current_price * (1 + self.p.take_profit_percent)
|
143 |
+
|
144 |
+
# Alternative stop loss using ATR for volatility
|
145 |
+
atr_stop = current_price - (self.atr[0] * self.p.atr_multiplier)
|
146 |
+
self.stop_price = max(stop_loss, atr_stop)
|
147 |
+
self.take_profit_price = take_profit
|
148 |
+
|
149 |
+
# Manage existing position
|
150 |
+
else:
|
151 |
+
# Exit conditions
|
152 |
+
exit_conditions = (
|
153 |
+
current_price < self.stop_price or # Stop loss triggered
|
154 |
+
current_price > self.take_profit_price or # Take profit reached
|
155 |
+
self.rsi[0] > self.p.rsi_upper or # Overbought condition
|
156 |
+
current_price < self.sma_short[0] or # Trend change
|
157 |
+
not analysis_confirmation # Loss of analysis confirmation
|
158 |
+
)
|
159 |
+
|
160 |
+
if exit_conditions:
|
161 |
+
self.close() # Close entire position
|
162 |
+
self.stop_price = None
|
163 |
+
self.take_profit_price = None
|
164 |
+
|
165 |
+
def _analyze_prior_research(self):
|
166 |
+
# Integrate multiple analysis aspects
|
167 |
+
if not self.p.analysis:
|
168 |
+
return True
|
169 |
+
|
170 |
+
# Sentiment analysis check
|
171 |
+
sentiment_positive = (
|
172 |
+
self.sentiment_analysis and
|
173 |
+
self.sentiment_analysis['positive'] > self.p.sentiment_threshold
|
174 |
+
)
|
175 |
+
|
176 |
+
# Technical analysis check
|
177 |
+
technical_bullish = (
|
178 |
+
self.technical_analysis and
|
179 |
+
self.technical_analysis['trend'] == 'bullish'
|
180 |
+
)
|
181 |
+
|
182 |
+
# Confidence check
|
183 |
+
high_confidence = bool(self.confidence > self.p.confidence_threshold)
|
184 |
+
|
185 |
+
# Combine conditions
|
186 |
+
return sentiment_positive and technical_bullish and high_confidence
|
187 |
+
|
188 |
+
def stop(self):
|
189 |
+
# Final report when backtest completes
|
190 |
+
self.log('Final Portfolio Value: %.2f' % self.broker.getvalue())
|
191 |
+
|
192 |
+
class BacktraderIntegration:
|
193 |
+
def __init__(self, analysis_result=None, strategy_params=None):
|
194 |
+
self.cerebro = bt.Cerebro()
|
195 |
+
self.analysis = analysis_result
|
196 |
+
self.strategy_params = strategy_params or {}
|
197 |
+
self.logger = Logger() # Create shared logger instance
|
198 |
+
self.setup_environment()
|
199 |
+
|
200 |
+
def setup_environment(self):
|
201 |
+
self.cerebro.broker.setcash(100000.0)
|
202 |
+
self.cerebro.broker.setcommission(commission=0.001)
|
203 |
+
self.cerebro.addstrategy(CustomStrategy, analysis=self.analysis, logger=self.logger, **self.strategy_params)
|
204 |
+
|
205 |
+
def add_data_feed(self, ticker, start_date, end_date):
|
206 |
+
# Convert datetime to string
|
207 |
+
start_str = start_date.strftime("%Y-%m-%d")
|
208 |
+
end_str = end_date.strftime("%Y-%m-%d")
|
209 |
+
|
210 |
+
# Download data from Yahoo Finance
|
211 |
+
df = YahooFinanceClient.download_data(ticker, start_str, end_str, period=None)
|
212 |
+
|
213 |
+
|
214 |
+
if not isinstance(df, pd.DataFrame):
|
215 |
+
raise TypeError(f"Esperado pandas.DataFrame, mas recebeu {type(df)}")
|
216 |
+
|
217 |
+
# adjust the columns
|
218 |
+
if isinstance(df.columns, pd.MultiIndex):
|
219 |
+
df.columns = df.columns.droplevel(1) # remove the multi-index
|
220 |
+
|
221 |
+
# minimum columns expected
|
222 |
+
expected_columns = ["Open", "High", "Low", "Close", "Volume"]
|
223 |
+
|
224 |
+
# Make sure that the columns are correct
|
225 |
+
if not all(col in df.columns for col in expected_columns):
|
226 |
+
raise ValueError(f"Colunas do DataFrame incorretas: {df.columns}")
|
227 |
+
|
228 |
+
data = bt.feeds.PandasData(dataname=df)
|
229 |
+
self.cerebro.adddata(data)
|
230 |
+
|
231 |
+
def run_simulation(self, initial_cash, commission):
|
232 |
+
self.cerebro.broker.setcash(initial_cash)
|
233 |
+
self.cerebro.broker.setcommission(commission=commission/100)
|
234 |
+
self.cerebro.run()
|
235 |
+
|
236 |
+
logs = self.logger.get_logs()
|
237 |
+
|
238 |
+
return self.cerebro.broker.getvalue(), logs
|
test.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import random
|
3 |
+
import time
|
4 |
+
|
5 |
+
# Dummy lightweight LLM model function
|
6 |
+
def lightweight_llm(seed, difficulty_prefix):
|
7 |
+
"""
|
8 |
+
Simulate the LLM finding a candidate hash starting with a given pattern.
|
9 |
+
The seed is used to generate a random number and the difficulty_prefix is what we aim for.
|
10 |
+
"""
|
11 |
+
random.seed(seed + time.time())
|
12 |
+
candidate = f"{random.getrandbits(256):064x}"
|
13 |
+
if candidate.startswith(difficulty_prefix):
|
14 |
+
return candidate
|
15 |
+
return None
|
16 |
+
|
17 |
+
def mine_block(block_data, difficulty_prefix='000'):
|
18 |
+
"""
|
19 |
+
Simplified mining function using a lightweight LLM model.
|
20 |
+
"""
|
21 |
+
seed = random.randint(0, 1 << 32)
|
22 |
+
while True:
|
23 |
+
candidate_hash = lightweight_llm(seed, difficulty_prefix)
|
24 |
+
if candidate_hash:
|
25 |
+
# Incorporate block data and candidate hash
|
26 |
+
block_header = f"{block_data}{candidate_hash}"
|
27 |
+
final_hash = hashlib.sha256(block_header.encode()).hexdigest()
|
28 |
+
if final_hash.startswith(difficulty_prefix):
|
29 |
+
print(f"Block mined with candidate hash: {candidate_hash}")
|
30 |
+
return final_hash
|
31 |
+
# Optionally update the seed to vary the input
|
32 |
+
seed = random.randint(0, 1 << 32)
|
33 |
+
|
34 |
+
# Example block data and mining process
|
35 |
+
if __name__ == '__main__':
|
36 |
+
block_data = "previous_hash:0000000000000000000, transactions: [...]"
|
37 |
+
print("Starting mining process...")
|
38 |
+
new_block_hash = mine_block(block_data, difficulty_prefix='0000')
|
39 |
+
print(f"New block hash: {new_block_hash}")
|