# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import warnings from typing import Union import cv2 import numpy as np import torch from huggingface_hub import hf_hub_download from PIL import Image from ..util import HWC3, resize_image from .automatic_mask_generator import SamAutomaticMaskGenerator from .build_sam import sam_model_registry class SamDetector: def __init__(self, mask_generator: SamAutomaticMaskGenerator): self.mask_generator = mask_generator @classmethod def from_pretrained(cls, pretrained_model_or_path, model_type="vit_h", filename="sam_vit_h_4b8939.pth", subfolder=None, cache_dir=None): """ Possible model_type : vit_h, vit_l, vit_b, vit_t download weights from https://github.com/facebookresearch/segment-anything """ if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download(pretrained_model_or_path, filename, subfolder=subfolder, cache_dir=cache_dir) sam = sam_model_registry[model_type](checkpoint=model_path) if torch.cuda.is_available(): sam.to("cuda") mask_generator = SamAutomaticMaskGenerator(sam) return cls(mask_generator) def show_anns(self, anns): if len(anns) == 0: return sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) h, w = anns[0]['segmentation'].shape final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB") for ann in sorted_anns: m = ann['segmentation'] img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8) for i in range(3): img[:,:,i] = np.random.randint(255, dtype=np.uint8) final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m*255))) return np.array(final_img, dtype=np.uint8) def __call__(self, input_image: Union[np.ndarray, Image.Image]=None, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs) -> Image.Image: if "image" in kwargs: warnings.warn("image is deprecated, please use `input_image=...` instead.", DeprecationWarning) input_image = kwargs.pop("image") if input_image is None: raise ValueError("input_image must be defined.") if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) # Generate Masks masks = self.mask_generator.generate(input_image) # Create map map = self.show_anns(masks) detected_map = map detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map