# code based in https://github.com/TheMistoAI/ComfyUI-Anyline/blob/main/anyline.py import os import cv2 import numpy as np import torch from einops import rearrange from huggingface_hub import hf_hub_download from PIL import Image from skimage import morphology from ..teed.ted import TED from ..util import HWC3, resize_image, safe_step class AnylineDetector: def __init__(self, model): self.model = model @classmethod def from_pretrained(cls, pretrained_model_or_path, filename=None, subfolder=None): if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download( pretrained_model_or_path, filename, subfolder=subfolder ) model = TED() model.load_state_dict(torch.load(model_path, map_location="cpu")) return cls(model) def to(self, device): self.model.to(device) return self def __call__( self, input_image, detect_resolution=1280, guassian_sigma=2.0, intensity_threshold=3, output_type="pil", ): device = next(iter(self.model.parameters())).device if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) output_type = output_type or "pil" else: output_type = output_type or "np" original_height, original_width, _ = input_image.shape input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) assert input_image.ndim == 3 height, width, _ = input_image.shape with torch.no_grad(): image_teed = torch.from_numpy(input_image.copy()).float().to(device) image_teed = rearrange(image_teed, "h w c -> 1 c h w") edges = self.model(image_teed) edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] edges = [ cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR) for e in edges ] edges = np.stack(edges, axis=2) edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) edge = safe_step(edge, 2) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) mteed_result = edge mteed_result = HWC3(mteed_result) x = input_image.astype(np.float32) g = cv2.GaussianBlur(x, (0, 0), guassian_sigma) intensity = np.min(g - x, axis=2).clip(0, 255) intensity /= max(16, np.median(intensity[intensity > intensity_threshold])) intensity *= 127 lineart_result = intensity.clip(0, 255).astype(np.uint8) lineart_result = HWC3(lineart_result) lineart_result = self.get_intensity_mask( lineart_result, lower_bound=0, upper_bound=255 ) cleaned = morphology.remove_small_objects( lineart_result.astype(bool), min_size=36, connectivity=1 ) lineart_result = lineart_result * cleaned final_result = self.combine_layers(mteed_result, lineart_result) final_result = cv2.resize( final_result, (original_width, original_height), interpolation=cv2.INTER_LINEAR, ) if output_type == "pil": final_result = Image.fromarray(final_result) return final_result def get_intensity_mask(self, image_array, lower_bound, upper_bound): mask = image_array[:, :, 0] mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0) mask = np.expand_dims(mask, 2).repeat(3, axis=2) return mask def combine_layers(self, base_layer, top_layer): mask = top_layer.astype(bool) temp = 1 - (1 - top_layer) * (1 - base_layer) result = base_layer * (~mask) + temp * mask return result