import os import cv2 import numpy as np import torch from einops import rearrange from huggingface_hub import hf_hub_download from PIL import Image from ..util import HWC3, resize_image, safe_step from .ted import TED class TEEDdetector: def __init__(self, model): self.model = model @classmethod def from_pretrained(cls, pretrained_model_or_path, filename=None, subfolder=None): if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download( pretrained_model_or_path, filename, subfolder=subfolder ) model = TED() model.load_state_dict(torch.load(model_path, map_location="cpu")) return cls(model) def to(self, device): self.model.to(device) return self def __call__( self, input_image, detect_resolution=512, safe_steps=2, output_type="pil", ): device = next(iter(self.model.parameters())).device if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) output_type = output_type or "pil" else: output_type = output_type or "np" original_height, original_width, _ = input_image.shape input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) assert input_image.ndim == 3 height, width, _ = input_image.shape with torch.no_grad(): image_teed = torch.from_numpy(input_image.copy()).float().to(device) image_teed = rearrange(image_teed, "h w c -> 1 c h w") edges = self.model(image_teed) edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] edges = [ cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR) for e in edges ] edges = np.stack(edges, axis=2) edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) if safe_steps != 0: edge = safe_step(edge, safe_steps) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) detected_map = edge detected_map = HWC3(detected_map) detected_map = cv2.resize( detected_map, (original_width, original_height), interpolation=cv2.INTER_LINEAR, ) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map