import sys sys.path.append('./') from PIL import Image import gradio as gr import numpy as np import cv2 from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from dressing_sd.pipelines.pipeline_sd import PipIpaControlNet from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from torchvision import transforms import cv2 from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection import diffusers from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection from adapter.attention_processor import CacheAttnProcessor2_0, RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, LoRAIPAttnProcessor2_0 from diffusers import ControlNetModel, UNet2DConditionModel, \ AutoencoderKL, DDIMScheduler from adapter.resampler import Resampler from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPTextModel, CLIPTextModelWithProjection, ) from diffusers import DDPMScheduler, AutoencoderKL, UniPCMultistepScheduler from typing import List import torch import argparse import os from controlnet_aux import OpenposeDetector from insightface.app import FaceAnalysis from insightface.utils import face_align # device = 'cuda:2' if torch.cuda.is_available() else 'cpu' parser = argparse.ArgumentParser(description='ReferenceAdapter diffusion') parser.add_argument('--if_resampler', type=bool, default=True) parser.add_argument('--if_ipa', type=bool, default=True) parser.add_argument('--if_control', type=bool, default=True) parser.add_argument('--pretrained_model_name_or_path', default="./ckpt/Realistic_Vision_V4.0_noVAE", type=str) parser.add_argument('--ip_ckpt', default="./ckpt/ip-adapter-faceid-plus_sd15.bin", type=str) parser.add_argument('--pretrained_image_encoder_path', default="./ckpt/image_encoder/", type=str) parser.add_argument('--pretrained_vae_model_path', default="./ckpt/sd-vae-ft-mse/", type=str) parser.add_argument('--model_ckpt', default="/./ckpt/IMAGDressing-v1_512.pt", type=str) parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler") # parser.add_argument('--device', type=str, default="cuda:0") args = parser.parse_args() # svae path output_path = args.output_path if not os.path.exists(output_path): os.makedirs(output_path) device = "cuda" if torch.cuda.is_available() else "cpu" args.device = device generator = torch.Generator(device=args.device).manual_seed(42) vae = AutoencoderKL.from_pretrained(args.pretrained_vae_model_path).to(dtype=torch.float16, device=args.device) tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder").to( dtype=torch.float16, device=args.device) image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_image_encoder_path).to( dtype=torch.float16, device=args.device) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet").to( dtype=torch.float16,device=args.device) image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3') #face_model app = FaceAnalysis(providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了 app.prepare(ctx_id=0, det_size=(640, 640)) # def ref proj weight image_proj = Resampler( dim=unet.config.cross_attention_dim, depth=4, dim_head=64, heads=12, num_queries=16, embedding_dim=image_encoder.config.hidden_size, output_dim=unet.config.cross_attention_dim, ff_mult=4 ) image_proj = image_proj.to(dtype=torch.float16, device=args.device) # set attention processor attn_procs = {} st = unet.state_dict() for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] # lora_rank = hidden_size // 2 # args.lora_rank if cross_attention_dim is None: attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size) else: attn_procs[name] = LoRAIPAttnProcessor2_0(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) unet.set_attn_processor(attn_procs) adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device) del st ref_unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet").to( dtype=torch.float16, device=args.device) ref_unet.set_attn_processor( {name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache # weights load model_sd = torch.load(args.model_ckpt, map_location="cpu")["module"] ref_unet_dict = {} unet_dict = {} image_proj_dict = {} adapter_modules_dict = {} for k in model_sd.keys(): if k.startswith("ref_unet"): ref_unet_dict[k.replace("ref_unet.", "")] = model_sd[k] elif k.startswith("unet"): unet_dict[k.replace("unet.", "")] = model_sd[k] elif k.startswith("proj"): image_proj_dict[k.replace("proj.", "")] = model_sd[k] elif k.startswith("adapter_modules") and 'ref' in k: adapter_modules_dict[k.replace("adapter_modules.", "")] = model_sd[k] else: print(k) ref_unet.load_state_dict(ref_unet_dict) image_proj.load_state_dict(image_proj_dict) adapter_modules.load_state_dict(adapter_modules_dict, strict=False) noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") control_net_openpose = ControlNetModel.from_pretrained( "/home/sf/control_v11p_sd15_openpose", torch_dtype=torch.float16).to(device=args.device) # pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer, # text_encoder=text_encoder, image_encoder=image_encoder, # ip_ckpt=args.ip_ckpt, # ImgProj=image_proj, controlnet=control_net_openpose, # scheduler=noise_scheduler, # safety_checker=StableDiffusionSafetyChecker, # feature_extractor=CLIPImageProcessor) img_transform = transforms.Compose([ transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ]) openpose_model = OpenposeDetector.from_pretrained("/home/sf/ControlNet").to(args.device) def resize_img(input_image, max_side=640, min_side=512, size=None, pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): w, h = input_image.size ratio = min_side / min(h, w) w, h = round(ratio*w), round(ratio*h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) return input_image def tryon_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42): # prompt = prompt + ', confident smile expression, fashion, best quality, amazing quality, very aesthetic' if prompt is None: prompt = "a photography of a model" prompt = prompt + ', best quality, high quality' print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed) clip_image_processor = CLIPImageProcessor() # clothes_img = garm_img.convert("RGB") if not garm_img: raise gr.Error("请上传衣服 / Please upload garment") clothes_img = resize_img(garm_img) vae_clothes = img_transform(clothes_img).unsqueeze(0) # print(vae_clothes.shape) ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values if if_ipa: # image = cv2.imread(face_img) faces = app.get(face_img) if not faces: raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait") faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face # face_img = face_image[:, :, ::-1] # face_img = Image.fromarray(face_image.astype('uint8')) # face_img.save('face.png') face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values else: faceid_embeds = None face_clip_image = None if if_control: pose_img = openpose_model(pose_img.convert("RGB")) # pose_img.save('pose.png') pose_image = diffusers.utils.load_image(pose_img) else: pose_image = None # print(if_ipa, if_control) # pipe, generator = prepare_pipeline(args, if_ipa, if_control, unet, ref_unet, vae, tokenizer, text_encoder, # image_encoder, image_proj, control_net_openpose) noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) # noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, ip_ckpt=args.ip_ckpt, ImgProj=image_proj, controlnet=control_net_openpose, scheduler=noise_scheduler, safety_checker=StableDiffusionSafetyChecker, feature_extractor=CLIPImageProcessor) output = pipe( ref_image=vae_clothes, prompt=prompt, ref_clip_image=ref_clip_image, pose_image=pose_image, face_clip_image=face_clip_image, faceid_embeds=faceid_embeds, null_prompt='', negative_prompt='bare, naked, nude, undressed, monochrome, lowres, bad anatomy, worst quality, low quality', width=512, height=640, num_images_per_prompt=1, guidance_scale=caption_guidance_scale, image_scale=cloth_guidance_scale, ipa_scale=face_guidance_scale, s_lora_scale= self_guidance_scale, c_lora_scale= cross_guidance_scale, generator=generator, num_inference_steps=denoise_steps, ).images if if_post and if_ipa: # 将 PIL 图像转换为 NumPy 数组 output_array = np.array(output[0]) # 将 RGB 图像转换为 BGR 图像 bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR) # 将 NumPy 数组转换为 PIL 图像 bgr_image = Image.fromarray(bgr_array) result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8')))) return result[OutputKeys.OUTPUT_IMG] return output[0] example_path = os.path.dirname(__file__) garm_list = os.listdir(os.path.join(example_path, "cloth", 'cloth')) garm_list_path = [os.path.join(example_path, "cloth", 'cloth', garm) for garm in garm_list] face_list = os.listdir(os.path.join(example_path, "face", 'face')) face_list_path = [os.path.join(example_path, "face", 'face', face) for face in face_list] pose_list = os.listdir(os.path.join(example_path, "pose", 'pose')) pose_list_path = [os.path.join(example_path, "pose", 'pose', pose) for pose in pose_list] ##default human image_blocks = gr.Blocks().queue() with image_blocks as demo: gr.Markdown("## IMAGDressing-v1: Customizable Virtual Dressing 👕👔👚") gr.Markdown( "Customize your virtual look with ease—adjust your appearance, pose, and garment as you like
." "If you enjoy this project, please check out the [source codes](https://github.com/muzishen/IMAGDressing) and [model](https://huggingface.co/feishen29/IMAGDressing). Do not hesitate to give us a star. Thank you!
" "Your support fuels the development of new versions." ) with gr.Row(): with gr.Column(): garm_img = gr.Image(label="Garment", sources='upload', type="pil") example = gr.Examples( inputs=garm_img, examples_per_page=8, examples=garm_list_path) with gr.Column(): imgs = gr.Image(label="Face", sources='upload', type="numpy") with gr.Row(): is_checked_face = gr.Checkbox(label="Yes", info="Use face ", value=False) example = gr.Examples( inputs=imgs, examples_per_page=10, examples=face_list_path ) with gr.Row(): is_checked_postprocess = gr.Checkbox(label="Yes", info="Use postprocess ", value=False) with gr.Column(): pose_img = gr.Image(label="Pose", sources='upload', type="pil") with gr.Row(): is_checked_pose = gr.Checkbox(label="Yes", info="Use pose ", value=False) example = gr.Examples( inputs=pose_img, examples_per_page=8, examples=pose_list_path) # with gr.Column(): # # image_out = gr.Image(label="Output", elem_id="output-img", height=400) # masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False) with gr.Column(): # image_out = gr.Image(label="Output", elem_id="output-img", height=400) image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False) # Add usage tips below the output image gr.Markdown(""" ### Usage Tips - **Upload Images**: Upload your desired garment, face, and pose images in the respective sections. - **Select Options**: Use the checkboxes to include face and pose in the generated output. - **View Output**: The resulting image will be displayed in the Output section. - **Examples**: Click on example images to quickly load and test different configurations. - **Advanced Settings**: Click on **Advanced Settings** to edit captions and adjust hyperparameters. - **Feedback**: If you have any issues or suggestions, please let us know through the [GitHub repository](https://github.com/muzishen/IMAGDressing). """) with gr.Column(): try_button = gr.Button(value="Dressing") with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(elem_id="prompt-container"): with gr.Row(): prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman', show_label=False, elem_id="prompt") # with gr.Row(): # neg_prompt = gr.Textbox(placeholder="Description of neg prompt ex) Short Sleeve Round Neck T-shirts", # show_label=False, elem_id="neg_prompt") with gr.Row(): cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.9, step=0.1, visible=True) with gr.Row(): caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=7.0, step=0.1, visible=True) with gr.Row(): face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1, visible=True) with gr.Row(): self_guidance_scale = gr.Slider(label="Self-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1, visible=True) with gr.Row(): cross_guidance_scale = gr.Slider(label="Cross-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1, visible=True) with gr.Row(): denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=50, value=30, step=1) seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=20240508) try_button.click(fn=tryon_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed], outputs=[image_out], api_name='tryon') image_blocks.launch(server_port=20021) # 指定固定端口