Fedir Zadniprovskyi commited on
Commit
9f56267
1 Parent(s): 8ad3023

docs: add examples, roadmap, etc.

Browse files
Files changed (7) hide show
  1. Dockerfile.cpu +5 -2
  2. Dockerfile.cuda +4 -2
  3. README.md +40 -14
  4. compose.yaml +0 -4
  5. flake.nix +1 -0
  6. speaches/config.py +23 -11
  7. speaches/main.py +2 -1
Dockerfile.cpu CHANGED
@@ -12,5 +12,8 @@ RUN poetry install
12
  COPY ./speaches ./speaches
13
  ENTRYPOINT ["poetry", "run"]
14
  CMD ["uvicorn", "speaches.main:app"]
15
- ENV MODEL_SIZE=distil-small.en
16
- ENV DEVICE=cpu
 
 
 
 
12
  COPY ./speaches ./speaches
13
  ENTRYPOINT ["poetry", "run"]
14
  CMD ["uvicorn", "speaches.main:app"]
15
+ ENV WHISPER_MODEL=distil-small.en
16
+ ENV WHISPER_INFERENCE_DEVICE=cpu
17
+ ENV WHISPER_COMPUTE_TYPE=int8
18
+ ENV UVICORN_HOST=0.0.0.0
19
+ ENV UVICORN_PORT=8000
Dockerfile.cuda CHANGED
@@ -12,5 +12,7 @@ RUN poetry install
12
  COPY ./speaches ./speaches
13
  ENTRYPOINT ["poetry", "run"]
14
  CMD ["uvicorn", "speaches.main:app"]
15
- ENV MODEL_SIZE=distil-medium.en
16
- ENV DEVICE=cuda
 
 
 
12
  COPY ./speaches ./speaches
13
  ENTRYPOINT ["poetry", "run"]
14
  CMD ["uvicorn", "speaches.main:app"]
15
+ ENV WHISPER_MODEL=distil-medium.en
16
+ ENV WHISPER_INFERENCE_DEVICE=cuda
17
+ ENV UVICORN_HOST=0.0.0.0
18
+ ENV UVICORN_PORT=8000
README.md CHANGED
@@ -1,25 +1,51 @@
1
- # WARN: WIP(code is ugly, may have bugs, test files aren't included, etc.)
2
  # Intro
3
- `speaches` is a webserver that supports real-time transcription using WebSockets.
4
- - [faster-whisper](https://github.com/SYSTRAN/faster-whisper) is used as the backend. Both GPU and CPU inference is supported.
5
- - LocalAgreement2([paper](https://aclanthology.org/2023.ijcnlp-demo.3.pdf)|[original implementation](https://github.com/ufal/whisper_streaming)) algorithm is used for real-time transcription.
6
- - Can be deployed using Docker (Compose configuration can be found in (compose.yaml[./compose.yaml])).
7
  - All configuration is done through environment variables. See [config.py](./speaches/config.py).
8
  - NOTE: only transcription of single channel, 16000 sample rate, raw, 16-bit little-endian audio is supported.
9
- - NOTE: this isn't really meant to be used as a standalone tool but rather to add transcription features to other applications
10
  Please create an issue if you find a bug, have a question, or a feature suggestion.
11
  # Quick Start
12
- NOTE: You'll need to install [websocat](https://github.com/vi/websocat?tab=readme-ov-file#installation) or an alternative.
13
- Spinning up a `speaches` web-server
14
  ```bash
15
- docker run --detach --gpus=all --publish 8000:8000 --mount ~/.cache/huggingface:/root/.cache/huggingface --name speaches fedirz/speaches:cuda
16
  # or
17
- docker run --detach --publish 8000:8000 --mount ~/.cache/huggingface:/root/.cache/huggingface --name speaches fedirz/speaches:cpu
18
  ```
19
- Sending audio data via websocket
20
  ```bash
21
- arecord -f S16_LE -c1 -r 16000 -t raw -D default | websocat --binary ws://localhost:8000/v1/audio/transcriptions
22
  # or
23
- ffmpeg -f alsa -ac 1 -ar 16000 -sample_fmt s16le -i default | websocat --binary ws://localhost:8000/v1/audio/transcriptions
24
  ```
25
- # Example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # WARN: WIP (code is ugly, bad documentation, may have bugs, test files aren't included, CPU inference was barely tested, etc.)
2
  # Intro
3
+ :peach:`speaches` is a web server that supports real-time transcription using WebSockets.
4
+ - [faster-whisper](https://github.com/SYSTRAN/faster-whisper) is used as the backend. Both GPU and CPU inference are supported.
5
+ - LocalAgreement2 ([paper](https://aclanthology.org/2023.ijcnlp-demo.3.pdf) | [original implementation](https://github.com/ufal/whisper_streaming)) algorithm is used for real-time transcription.
6
+ - Can be deployed using Docker (Compose configuration can be found in [compose.yaml](./compose.yaml)).
7
  - All configuration is done through environment variables. See [config.py](./speaches/config.py).
8
  - NOTE: only transcription of single channel, 16000 sample rate, raw, 16-bit little-endian audio is supported.
9
+ - NOTE: this isn't really meant to be used as a standalone tool but rather to add transcription features to other applications.
10
  Please create an issue if you find a bug, have a question, or a feature suggestion.
11
  # Quick Start
12
+ Spinning up a `speaches` web server
 
13
  ```bash
14
+ docker run --gpus=all --publish 8000:8000 --mount type=bind,source=$HOME/.cache/huggingface,target=/root/.cache/huggingface fedirz/speaches:cuda
15
  # or
16
+ docker run --publish 8000:8000 --mount type=bind,source=$HOME/.cache/huggingface,target=/root/.cache/huggingface fedirz/speaches:cpu
17
  ```
18
+ Streaming audio data from a microphone. [websocat](https://github.com/vi/websocat?tab=readme-ov-file#installation) installation is required.
19
  ```bash
20
+ ffmpeg -loglevel quiet -f alsa -i default -ac 1 -ar 16000 -f s16le - | websocat --binary ws://0.0.0.0:8000/v1/audio/transcriptions
21
  # or
22
+ arecord -f S16_LE -c1 -r 16000 -t raw -D default 2>/dev/null | websocat --binary ws://0.0.0.0:8000/v1/audio/transcriptions
23
  ```
24
+ Streaming audio data from a file.
25
+ ```bash
26
+ ffmpeg -loglevel quiet -f alsa -i default -ac 1 -ar 16000 -f s16le - > output.raw
27
+ # send all data at once
28
+ cat output.raw | websocat --no-close --binary ws://0.0.0.0:8000/v1/audio/transcriptions
29
+ # Output: {"text":"One,"}{"text":"One, two, three, four, five."}{"text":"One, two, three, four, five."}%
30
+ # streaming 16000 samples per second. each sample is 2 bytes
31
+ cat output.raw | pv -qL 32000 | websocat --no-close --binary ws://0.0.0.0:8000/v1/audio/transcriptions
32
+ # Output: {"text":"One,"}{"text":"One, two,"}{"text":"One, two, three,"}{"text":"One, two, three, four, five."}{"text":"One, two, three, four, five. one."}%
33
+ ```
34
+ Transcribing a file
35
+ ```bash
36
+ # convert the file if it has a different format
37
+ ffmpeg -i output.wav -ac 1 -ar 16000 -f s16le output.raw
38
+ curl -X POST -F "[email protected]" http://0.0.0.0:8000/v1/audio/transcriptions
39
+ # Output: "{\"text\":\"One, two, three, four, five.\"}"%
40
+ ```
41
+ # Roadmap
42
+ - [ ] Support file transcription (non-streaming) of multiple formats.
43
+ - [ ] CLI client.
44
+ - [ ] Separate the web server related code from the "core", and publish "core" as a package.
45
+ - [ ] Additional documentation and code comments.
46
+ - [ ] Write benchmarks for measuring streaming transcription performance. Possible metrics:
47
+ - Latency (time when transcription is sent - time between when audio has been received)
48
+ - Accuracy (already being measured when testing but the process can be improved)
49
+ - Total seconds of audio transcribed / audio duration (since each audio chunk is being processed at least twice)
50
+ - [ ] Get the API response closer to the format used by OpenAI.
51
+ - [ ] Integrations...
compose.yaml CHANGED
@@ -11,8 +11,6 @@ services:
11
  restart: unless-stopped
12
  ports:
13
  - 8000:8000
14
- environment:
15
- - INFERENCE_DEVICE=cuda
16
  deploy:
17
  resources:
18
  reservations:
@@ -30,5 +28,3 @@ services:
30
  restart: unless-stopped
31
  ports:
32
  - 8000:8000
33
- environment:
34
- - INFERENCE_DEVICE=cpu
 
11
  restart: unless-stopped
12
  ports:
13
  - 8000:8000
 
 
14
  deploy:
15
  resources:
16
  reservations:
 
28
  restart: unless-stopped
29
  ports:
30
  - 8000:8000
 
 
flake.nix CHANGED
@@ -23,6 +23,7 @@
23
  lsyncd
24
  poetry
25
  pre-commit
 
26
  pyright
27
  python311
28
  websocat
 
23
  lsyncd
24
  poetry
25
  pre-commit
26
+ pv
27
  pyright
28
  python311
29
  websocat
speaches/config.py CHANGED
@@ -37,6 +37,7 @@ class Device(enum.StrEnum):
37
 
38
 
39
  # https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md
 
40
  class Quantization(enum.StrEnum):
41
  INT8 = "int8"
42
  INT8_FLOAT16 = "int8_float16"
@@ -153,24 +154,35 @@ class Language(enum.StrEnum):
153
 
154
 
155
  class WhisperConfig(BaseModel):
156
- model: Model = Field(default=Model.DISTIL_SMALL_EN)
157
- inference_device: Device = Field(default=Device.AUTO)
158
- compute_type: Quantization = Field(default=Quantization.DEFAULT)
 
 
 
 
159
 
160
 
161
  class Config(BaseSettings):
162
  model_config = SettingsConfigDict(env_nested_delimiter="_")
163
 
164
- log_level: str = "info"
165
- whisper: WhisperConfig = WhisperConfig()
166
  """
167
- Max duration to for the next audio chunk before finilizing the transcription and closing the connection.
168
  """
169
- max_no_data_seconds: float = 1.0
170
- min_duration: float = 1.0
171
- word_timestamp_error_margin: float = 0.2
172
- inactivity_window_seconds: float = 3.0
173
- max_inactivity_seconds: float = 1.5
 
 
 
 
 
 
 
174
 
175
 
176
  config = Config()
 
37
 
38
 
39
  # https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md
40
+ # NOTE: `Precision` might be a better name
41
  class Quantization(enum.StrEnum):
42
  INT8 = "int8"
43
  INT8_FLOAT16 = "int8_float16"
 
154
 
155
 
156
  class WhisperConfig(BaseModel):
157
+ model: Model = Field(default=Model.DISTIL_SMALL_EN) # ENV: WHISPER_MODEL
158
+ inference_device: Device = Field(
159
+ default=Device.AUTO
160
+ ) # ENV: WHISPER_INFERENCE_DEVICE
161
+ compute_type: Quantization = Field(
162
+ default=Quantization.DEFAULT
163
+ ) # ENV: WHISPER_COMPUTE_TYPE
164
 
165
 
166
  class Config(BaseSettings):
167
  model_config = SettingsConfigDict(env_nested_delimiter="_")
168
 
169
+ log_level: str = "info" # ENV: LOG_LEVEL
170
+ whisper: WhisperConfig = WhisperConfig() # ENV: WHISPER_*
171
  """
172
+ Max duration to for the next audio chunk before transcription is finilized and connection is closed.
173
  """
174
+ max_no_data_seconds: float = 1.0 # ENV: MAX_NO_DATA_SECONDS
175
+ min_duration: float = 1.0 # ENV: MIN_DURATION
176
+ word_timestamp_error_margin: float = 0.2 # ENV: WORD_TIMESTAMP_ERROR_MARGIN
177
+ """
178
+ Max allowed audio duration without any speech being detected before transcription is finilized and connection is closed.
179
+ """
180
+ max_inactivity_seconds: float = 2.0 # ENV: MAX_INACTIVITY_SECONDS
181
+ """
182
+ Controls how many latest seconds of audio are being passed through VAD.
183
+ Should be greater than `max_inactivity_seconds`
184
+ """
185
+ inactivity_window_seconds: float = 3.0 # ENV: INACTIVITY_WINDOW_SECONDS
186
 
187
 
188
  config = Config()
speaches/main.py CHANGED
@@ -90,6 +90,8 @@ async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None:
90
  audio_stream.duration - config.inactivity_window_seconds
91
  )
92
  vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
 
 
93
  timestamps = get_speech_timestamps(audio.data, vad_opts)
94
  if len(timestamps) == 0:
95
  logger.info(
@@ -143,7 +145,6 @@ async def transcribe_stream(
143
  tg.create_task(audio_receiver(ws, audio_stream))
144
  async for transcription in audio_transcriber(asr, audio_stream):
145
  logger.debug(f"Sending transcription: {transcription.text}")
146
- # Or should it be
147
  if ws.client_state == WebSocketState.DISCONNECTED:
148
  break
149
  await ws.send_text(format_transcription(transcription, response_format))
 
90
  audio_stream.duration - config.inactivity_window_seconds
91
  )
92
  vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
93
+ # NOTE: This is a synchronous operation that runs every time new data is received.
94
+ # This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato.
95
  timestamps = get_speech_timestamps(audio.data, vad_opts)
96
  if len(timestamps) == 0:
97
  logger.info(
 
145
  tg.create_task(audio_receiver(ws, audio_stream))
146
  async for transcription in audio_transcriber(asr, audio_stream):
147
  logger.debug(f"Sending transcription: {transcription.text}")
 
148
  if ws.client_state == WebSocketState.DISCONNECTED:
149
  break
150
  await ws.send_text(format_transcription(transcription, response_format))