# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
    AttnProcessor2_0,
    FusedAttnProcessor2_0,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    USE_PEFT_BACKEND,
    deprecate,
    is_invisible_watermark_available,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline



if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionXLInpaintPipeline
        >>> from diffusers.utils import load_image

        >>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
        ...     "stabilityai/stable-diffusion-xl-base-1.0",
        ...     torch_dtype=torch.float16,
        ...     variant="fp16",
        ...     use_safetensors=True,
        ... )
        >>> pipe.to("cuda")

        >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
        >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

        >>> init_image = load_image(img_url).convert("RGB")
        >>> mask_image = load_image(mask_url).convert("RGB")

        >>> prompt = "A majestic tiger sitting on a bench"
        >>> image = pipe(
        ...     prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
        ... ).images[0]
        ```
"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


def mask_pil_to_torch(mask, height, width):
    # preprocess mask
    if isinstance(mask, (PIL.Image.Image, np.ndarray)):
        mask = [mask]

    if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
        mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
        mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
        mask = mask.astype(np.float32) / 255.0
    elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
        mask = np.concatenate([m[None, None, :] for m in mask], axis=0)

    mask = torch.from_numpy(mask)
    return mask


def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
    """
    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
    converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
    ``image`` and ``1`` for the ``mask``.

    The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
    binarized (``mask > 0.5``) and cast to ``torch.float32`` too.

    Args:
        image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
            ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
        mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
            It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
            ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.


    Raises:
        ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
        should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
        TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
            (ot the other way around).

    Returns:
        tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
            dimensions: ``batch x channels x height x width``.
    """

    # checkpoint. TOD(Yiyi) - need to clean this up later
    deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
    deprecate(
        "prepare_mask_and_masked_image",
        "0.30.0",
        deprecation_message,
    )
    if image is None:
        raise ValueError("`image` input cannot be undefined.")

    if mask is None:
        raise ValueError("`mask_image` input cannot be undefined.")

    if isinstance(image, torch.Tensor):
        if not isinstance(mask, torch.Tensor):
            mask = mask_pil_to_torch(mask, height, width)

        if image.ndim == 3:
            image = image.unsqueeze(0)

        # Batch and add channel dim for single mask
        if mask.ndim == 2:
            mask = mask.unsqueeze(0).unsqueeze(0)

        # Batch single mask or add channel dim
        if mask.ndim == 3:
            # Single batched mask, no channel dim or single mask not batched but channel dim
            if mask.shape[0] == 1:
                mask = mask.unsqueeze(0)

            # Batched masks no channel dim
            else:
                mask = mask.unsqueeze(1)

        assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
        # assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
        assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"

        # Check image is in [-1, 1]
        # if image.min() < -1 or image.max() > 1:
        #    raise ValueError("Image should be in [-1, 1] range")

        # Check mask is in [0, 1]
        if mask.min() < 0 or mask.max() > 1:
            raise ValueError("Mask should be in [0, 1] range")

        # Binarize mask
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

        # Image as float32
        image = image.to(dtype=torch.float32)
    elif isinstance(mask, torch.Tensor):
        raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
    else:
        # preprocess image
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
            image = [image]
        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
            # resize all images w.r.t passed height an width
            image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

        mask = mask_pil_to_torch(mask, height, width)
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

    if image.shape[1] == 4:
        # images are in latent space and thus can't
        # be masked set masked_image to None
        # we assume that the checkpoint is not an inpainting
        # checkpoint. TOD(Yiyi) - need to clean this up later
        masked_image = None
    else:
        masked_image = image * (mask < 0.5)

    # n.b. ensure backwards compatibility as old function does not return image
    if return_image:
        return mask, masked_image, image

    return mask, masked_image


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
                must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class StableDiffusionXLInpaintPipeline(
    DiffusionPipeline,
    TextualInversionLoaderMixin,
    StableDiffusionXLLoraLoaderMixin,
    FromSingleFileMixin,
    IPAdapterMixin,
):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion XL.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion XL uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([` CLIPTextModelWithProjection`]):
            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`CLIPTokenizer`):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
            Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
            of `stabilityai/stable-diffusion-xl-refiner-1-0`.
        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
            `stabilityai/stable-diffusion-xl-base-1-0`.
        add_watermarker (`bool`, *optional*):
            Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
            watermark output images. If not defined, it will default to True if the package is installed, otherwise no
            watermarker will be used.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"

    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
        "image_encoder",
        "feature_extractor",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "add_text_embeds",
        "add_time_ids",
        "negative_pooled_prompt_embeds",
        "add_neg_time_ids",
        "mask",
        "masked_image_latents",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        image_encoder: CLIPVisionModelWithProjection = None,
        feature_extractor: CLIPImageProcessor = None,
        requires_aesthetics_score: bool = False,
        force_zeros_for_empty_prompt: bool = True,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
            scheduler=scheduler,
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )



    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype
        # print(image.shape)
        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
        # if not isinstance(ip_adapter_image, list):
        #     ip_adapter_image = [ip_adapter_image]

        # if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
        #     raise ValueError(
        #         f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
        #     )
        output_hidden_state = not isinstance(self.unet.encoder_hid_proj, ImageProjection)
        # print(output_hidden_state)
        image_embeds, negative_image_embeds = self.encode_image(
            ip_adapter_image, device, 1, output_hidden_state
        )
        # print(single_image_embeds.shape)
        # single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
        # single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
        # print(single_image_embeds.shape)
        if self.do_classifier_free_guidance:
            image_embeds = torch.cat([negative_image_embeds, image_embeds])
            image_embeds = image_embeds.to(device)


        return image_embeds


    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: str,
        prompt_2: Optional[str] = None,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder, lora_scale)

            if self.text_encoder_2 is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # textual inversion: procecss multi-vector tokens if necessary
            prompt_embeds_list = []
            prompts = [prompt, prompt_2]
            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                if clip_skip is None:
                    prompt_embeds = prompt_embeds.hidden_states[-2]
                else:
                    # "2" because SDXL always indexes from the penultimate layer.
                    prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )

            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        if self.text_encoder_2 is not None:
            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        else:
            prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            if self.text_encoder_2 is not None:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            else:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
                bs_embed * num_images_per_prompt, -1
            )

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        prompt_2,
        image,
        mask_image,
        height,
        width,
        strength,
        callback_steps,
        output_type,
        negative_prompt=None,
        negative_prompt_2=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
        padding_mask_crop=None,
    ):
        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
        if padding_mask_crop is not None:
            if not isinstance(image, PIL.Image.Image):
                raise ValueError(
                    f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
                )
            if not isinstance(mask_image, PIL.Image.Image):
                raise ValueError(
                    f"The mask image should be a PIL image when inpainting mask crop, but is of type"
                    f" {type(mask_image)}."
                )
            if output_type != "pil":
                raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
        image=None,
        timestep=None,
        is_strength_max=True,
        add_noise=True,
        return_noise=False,
        return_image_latents=False,
    ):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if (image is None or timestep is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise timestep has not been provided."
            )

        if image.shape[1] == 4:
            image_latents = image.to(device=device, dtype=dtype)
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
        elif return_image_latents or (latents is None and not is_strength_max):
            image = image.to(device=device, dtype=dtype)
            image_latents = self._encode_vae_image(image=image, generator=generator)
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)

        if latents is None and add_noise:
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
        elif add_noise:
            noise = latents.to(device)
            latents = noise * self.scheduler.init_noise_sigma
        else:
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            latents = image_latents.to(device)

        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs

    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        dtype = image.dtype
        if self.vae.config.force_upcast:
            image = image.float()
            self.vae.to(dtype=torch.float32)

        if isinstance(generator, list):
            image_latents = [
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)

        if self.vae.config.force_upcast:
            self.vae.to(dtype)

        image_latents = image_latents.to(dtype)
        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
        if masked_image is not None and masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = None

        if masked_image is not None:
            if masked_image_latents is None:
                masked_image = masked_image.to(device=device, dtype=dtype)
                masked_image_latents = self._encode_vae_image(masked_image, generator=generator)

            if masked_image_latents.shape[0] < batch_size:
                if not batch_size % masked_image_latents.shape[0] == 0:
                    raise ValueError(
                        "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                        f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                        " Make sure the number of images that you pass is divisible by the total requested batch size."
                    )
                masked_image_latents = masked_image_latents.repeat(
                    batch_size // masked_image_latents.shape[0], 1, 1, 1
                )

            masked_image_latents = (
                torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
            )

            # aligning device to prevent device errors when concating it with the latent model input
            masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)

        return mask, masked_image_latents

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
        # get the original timestep using init_timestep
        if denoising_start is None:
            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
            t_start = max(num_inference_steps - init_timestep, 0)
        else:
            t_start = 0

        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]

        # Strength is irrelevant if we directly request a timestep to start at;
        # that is, strength is determined by the denoising_start instead.
        if denoising_start is not None:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_start * self.scheduler.config.num_train_timesteps)
                )
            )

            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
            if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
                # if the scheduler is a 2nd order scheduler we might have to do +1
                # because `num_inference_steps` might be even given that every timestep
                # (except the highest one) is duplicated. If `num_inference_steps` is even it would
                # mean that we cut the timesteps in the middle of the denoising step
                # (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
                # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
                num_inference_steps = num_inference_steps + 1

            # because t_n+1 >= t_n, we slice the timesteps starting from the end
            timesteps = timesteps[-num_inference_steps:]
            return timesteps, num_inference_steps

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
    def _get_add_time_ids(
        self,
        original_size,
        crops_coords_top_left,
        target_size,
        aesthetic_score,
        negative_aesthetic_score,
        negative_original_size,
        negative_crops_coords_top_left,
        negative_target_size,
        dtype,
        text_encoder_projection_dim=None,
    ):
        if self.config.requires_aesthetics_score:
            add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
            add_neg_time_ids = list(
                negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
            )
        else:
            add_time_ids = list(original_size + crops_coords_top_left + target_size)
            add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if (
            expected_add_embed_dim > passed_add_embed_dim
            and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
        ):
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
            )
        elif (
            expected_add_embed_dim < passed_add_embed_dim
            and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
        ):
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
            )
        elif expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)

        return add_time_ids, add_neg_time_ids

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
    def upcast_vae(self):
        dtype = self.vae.dtype
        self.vae.to(dtype=torch.float32)
        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
            (
                AttnProcessor2_0,
                XFormersAttnProcessor,
                LoRAXFormersAttnProcessor,
                LoRAAttnProcessor2_0,
            ),
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(dtype)
            self.vae.decoder.conv_in.to(dtype)
            self.vae.decoder.mid_block.to(dtype)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def denoising_start(self):
        return self._denoising_start

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        masked_image_latents: torch.FloatTensor = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        padding_mask_crop: Optional[int] = None,
        strength: float = 0.9999,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        output_type: Optional[str] = "pil",
        cloth =None,
        pose_img = None,
        text_embeds_cloth=None,
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Tuple[int, int] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Tuple[int, int] = None,
        negative_original_size: Optional[Tuple[int, int]] = None,
        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
        negative_target_size: Optional[Tuple[int, int]] = None,
        aesthetic_score: float = 6.0,
        negative_aesthetic_score: float = 2.5,
        clip_skip: Optional[int] = None,
        pooled_prompt_embeds_c=None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            image (`PIL.Image.Image`):
                `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
                be masked out with `mask_image` and repainted according to `prompt`.
            mask_image (`PIL.Image.Image`):
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
                repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
                to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
                instead of 3, so the expected shape would be `(B, H, W, 1)`.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
                Anything below 512 pixels won't work well for
                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
                and checkpoints that are not specifically fine-tuned on low resolutions.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
                Anything below 512 pixels won't work well for
                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
                and checkpoints that are not specifically fine-tuned on low resolutions.
            padding_mask_crop (`int`, *optional*, defaults to `None`):
                The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If
                `padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and
                contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on
                the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large
                and contain information inreleant for inpainging, such as background.
            strength (`float`, *optional*, defaults to 0.9999):
                Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
                between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
                `strength`. The number of denoising steps depends on the amount of noise initially added. When
                `strength` is 1, added noise will be maximum and the denoising process will run for the full number of
                iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
                portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
                integer, the value of `strength` will be ignored.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            denoising_start (`float`, *optional*):
                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
                denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
                final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
                forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
                explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                To negatively condition the generation process based on a specific image resolution. Part of SDXL's
                micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
                micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                To negatively condition the generation process based on a target image resolution. It should be as same
                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            aesthetic_score (`float`, *optional*, defaults to 6.0):
                Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
                Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
                Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
                simulate an aesthetic score of the generated image by influencing the negative text condition.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs
        self.check_inputs(
            prompt,
            prompt_2,
            image,
            mask_image,
            height,
            width,
            strength,
            callback_steps,
            output_type,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
            padding_mask_crop,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end
        self._denoising_start = denoising_start
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )

        # 4. set timesteps
        def denoising_value_valid(dnv):
            return isinstance(self.denoising_end, float) and 0 < dnv < 1

        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps,
            strength,
            device,
            denoising_start=self.denoising_start if denoising_value_valid else None,
        )
        # check that number of inference steps is not < 1 - as this doesn't make sense
        if num_inference_steps < 1:
            raise ValueError(
                f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
                f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
            )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0

        # 5. Preprocess mask and image
        if padding_mask_crop is not None:
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
        init_image = init_image.to(dtype=torch.float32)

        mask = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
        if masked_image_latents is not None:
            masked_image = masked_image_latents
        elif init_image.shape[1] == 4:
            # if images are in latent space, we can't mask it
            masked_image = None
        else:
            masked_image = init_image * (mask < 0.5)

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4

        add_noise = True if self.denoising_start is None else False
        latents_outputs = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            add_noise=add_noise,
            return_noise=True,
            return_image_latents=return_image_latents,
        )

        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            self.do_classifier_free_guidance,
        )
        pose_img = pose_img.to(device=device, dtype=prompt_embeds.dtype)

        pose_img = self.vae.encode(pose_img).latent_dist.sample()
        pose_img = pose_img * self.vae.config.scaling_factor

        # pose_img = self._encode_vae_image(pose_img, generator=generator)

        pose_img = (
                torch.cat([pose_img] * 2) if self.do_classifier_free_guidance else pose_img
        )
        cloth = self._encode_vae_image(cloth, generator=generator)

        # # 8. Check that sizes of mask, masked image and latents match
        # if num_channels_unet == 9:
        #     # default case for runwayml/stable-diffusion-inpainting
        #     num_channels_mask = mask.shape[1]
        #     num_channels_masked_image = masked_image_latents.shape[1]
        #     if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
        #         raise ValueError(
        #             f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
        #             f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
        #             f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
        #             f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
        #             " `pipeline.unet` or your `mask_image` or `image` input."
        #         )
        # elif num_channels_unet != 4:
        #     raise ValueError(
        #         f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
        #     )
        # 8.1 Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        height, width = latents.shape[-2:]
        height = height * self.vae_scale_factor
        width = width * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 10. Prepare added time ids & embeddings
        if negative_original_size is None:
            negative_original_size = original_size
        if negative_target_size is None:
            negative_target_size = target_size

        add_text_embeds = pooled_prompt_embeds
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        add_time_ids, add_neg_time_ids = self._get_add_time_ids(
            original_size,
            crops_coords_top_left,
            target_size,
            aesthetic_score,
            negative_aesthetic_score,
            negative_original_size,
            negative_crops_coords_top_left,
            negative_target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )
        add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
            add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device)

        if ip_adapter_image is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image, device, batch_size * num_images_per_prompt
            )

        #project outside for loop
        image_embeds = self.unet.encoder_hid_proj(image_embeds).to(prompt_embeds.dtype)


        # 11. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        if (
            self.denoising_end is not None
            and self.denoising_start is not None
            and denoising_value_valid(self.denoising_end)
            and denoising_value_valid(self.denoising_start)
            and self.denoising_start >= self.denoising_end
        ):
            raise ValueError(
                f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
                + f" {self.denoising_end} when using type float."
            )
        elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        # 11.1 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)



        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                # concat latents, mask, masked_image_latents in the channel dimension
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)


                # bsz = mask.shape[0]
                if num_channels_unet == 13:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents,pose_img], dim=1)

                # if num_channels_unet == 9:
                #     latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
                if ip_adapter_image is not None:
                    added_cond_kwargs["image_embeds"] = image_embeds
                # down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
                down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
                # print(type(reference_features))
                # print(reference_features)
                reference_features = list(reference_features)
                # print(len(reference_features))
                # for elem in reference_features:
                #     print(elem.shape)
                # exit(1)
                if self.do_classifier_free_guidance:
                    reference_features = [torch.cat([torch.zeros_like(d), d]) for d in reference_features]


                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                    garment_features=reference_features,
                )[0]
                # noise_pred = self.unet(latent_model_input, t, 
                #                             prompt_embeds,timestep_cond=timestep_cond,cross_attention_kwargs=self.cross_attention_kwargs,added_cond_kwargs=added_cond_kwargs,down_block_additional_attn=down ).sample


                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if num_channels_unet == 4:
                    init_latents_proper = image_latents
                    if self.do_classifier_free_guidance:
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask

                    if i < len(timesteps) - 1:
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
                    add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
                    mask = callback_outputs.pop("mask", mask)
                    masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

                if XLA_AVAILABLE:
                    xm.mark_step()

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
        # else:
        #     return StableDiffusionXLPipelineOutput(images=latents)


        image = self.image_processor.postprocess(image, output_type=output_type)

        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

        # Offload all models
        self.maybe_free_model_hooks()

        # if not return_dict:
        return (image,)

        # return StableDiffusionXLPipelineOutput(images=image)