from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # im = PILImage.create("dog.jpg") # im.thumbnail((192, 192)) # im learn = load_learner("model.pkl") # learn.predict(im) categories = ("Dog", "Cat") def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # classify_image(im) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ["dog.jpg", "cat.jpg", "dunno.jpg"] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)