from typing import Optional, Tuple import torch from dataclasses import dataclass from transformers.file_utils import ModelOutput from transformers.modeling_outputs import QuestionAnsweringModelOutput @dataclass class QuestionAnsweringNaModelOutput(ModelOutput): """ Base class for outputs of question answering models. Args: loss (:obj:`torch.FloatTensor`, `optional`): Loss of the output. start_logits (:obj:`torch.FloatTensor`): Span start logits. end_logits (:obj:`torch.FloatTensor`): Span end logits. has_logits (:obj:`torch.FloatTensor`): Has logits tensor. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`): Hidden states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`): Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None has_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None