import torch from torch import nn from torch.nn import CrossEntropyLoss from transformers import ( AlbertForSequenceClassification as SeqClassification, AlbertPreTrainedModel, AlbertModel, AlbertConfig ) from .modeling_outputs import ( QuestionAnsweringModelOutput, QuestionAnsweringNaModelOutput ) class AlbertForSequenceClassification(SeqClassification): model_type = "albert" class AlbertForQuestionAnsweringAVPool(AlbertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] model_type = "albert" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels # The `has_ans` module is a linear layer with dropout and a linear layer. # The purpose of this module is to predict whether the question can be # answered with a "yes" or "no" given the context. It is trained to output # a probability distribution over the two classes. # # In other words, it predicts the probability of the existence of an # answer given the context. # # If the model predicts a high probability of "yes", it means the model # thinks the question can be answered. If the model predicts a high # probability of "no", it means the model thinks the question cannot be # answered. # # The output of this module is used in the loss computation to # encourage the model to output a probability distribution over the two # classes. # # The input to the module is the first word of the sequence (the # [CLS] token). # # The output of the module is a tensor of shape (batch_size, # num_labels) where each element is a probability. # Initialize weights self.albert = AlbertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.has_ans = nn.Sequential( nn.Dropout(p=config.hidden_dropout_prob), nn.Linear(config.hidden_size, self.num_labels) ) self.post_init() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, is_impossibles=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # outputs shape: (loss(optional, returned when labels is provided, else None), logits, hidden states, attentions) outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) # sequence_output shape: (batch_size, sequence_length, hidden_size) sequence_output = outputs[0] # logits shape: (batch_size, sequence_length, 2) logits = self.qa_outputs(sequence_output) # Split logits to start_logits and end_logits start_logits, end_logits = logits.split(1, dim=-1) # Note that we use .contiguous() to ensure that the tensor is stored in a contiguous block of memory # start_logits shape: (batch_size, sequence_length, 1) # end_logits shape: (batch_size, sequence_length, 1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() # Get the index of the first word first_word = sequence_output[:, 0, :].contiguous() has_logits = self.has_ans(first_word) total_loss = None if (start_positions is not None and end_positions is not None and is_impossibles is not None): # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size() > 1): end_positions = end_positions.squeeze(-1) if len(is_impossibles.size()) > 1: is_impossibles = is_impossibles.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms # clamping the values in the tensor to be within the range of 0 to ignored_index. # This means that any value less than 0 or greater than or equal to ignored_index will be set to 0. ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) is_impossibles.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) span_loss = start_loss + end_loss # Internal Front Verification (I-FV) # alpha1 = 1.0, alpha2 = 0.5 choice_loss = loss_fct(has_logits, is_impossibles.long()) total_loss = (span_loss + choice_loss) / 3 if not return_dict: output = ( start_logits, end_logits, has_logits, ) + outputs[2:] # add hidden states and attention if they are here return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringNaModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, has_logits=has_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class AlbertForQuestionAnsweringAVPoolBCEv3(AlbertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] model_type = "albert" def __init__(self, config): super.__init__(config) self.num_labels = config.num_labels self.albert = AlbertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.has_ans1 = nn.Sequential( nn.Dropout(p=config.hidden_dropout_prob), nn.Linear(config.hidden_size, 2), ) self.has_ans2 = nn.Sequential( nn.Dropout(p=config.hidden_dropout_prob), nn.Linear(config.hidden_size, 1), ) # Initialize weights self.post_init() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, is_impossibles=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() first_word = sequence_output[:, 0, :] has_logits1 = self.has_ans1(first_word).squeeze(-1) has_logits2 = self.has_ans2(first_word).squeeze(-1) total_loss = None if ( start_positions is not None and end_positions is not None and is_impossibles is not None ): # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) if len(is_impossibles.size()) > 1: is_impossibles = is_impossibles.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) is_impossibles.clamp_(0, ignored_index) is_impossibles = is_impossibles.to( dtype=next(self.parameters()).dtype) # fp16 compatibility loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) span_loss = start_loss + end_loss # Internal Front Verification (I-FV) choice_fct = nn.BCEWithLogitsLoss() mse_loss_fct = nn.MSELoss() choice_loss1 = loss_fct(has_logits1, is_impossibles.long()) choice_loss2 = choice_fct(has_logits2, is_impossibles) choice_loss3 = mse_loss_fct(has_logits2.view(-1), is_impossibles.view(-1)) choice_loss = choice_loss1 + choice_loss2 + choice_loss3 total_loss = (span_loss + choice_loss) / 5 if not return_dict: output = ( start_logits, end_logits, has_logits1, ) + outputs[2:] # hidden_states, attentions return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringNaModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, has_logits=has_logits1, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )