|
import os
|
|
import time
|
|
import json
|
|
import math
|
|
import copy
|
|
import collections
|
|
from typing import Optional, List, Dict, Tuple, Callable, Any, Union, NewType
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
import datasets
|
|
|
|
|
|
from transformers import AutoTokenizer
|
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
|
from transformers.utils import logging
|
|
from transformers.trainer_utils import EvalPrediction, EvalLoopOutput
|
|
|
|
from .args import (
|
|
HfArgumentParser,
|
|
RetroArguments,
|
|
TrainingArguments,
|
|
)
|
|
|
|
from .base import BaseReader
|
|
from . import constants as C
|
|
from .preprocess import (
|
|
get_sketch_features,
|
|
get_intensive_features
|
|
)
|
|
from .metrics import (
|
|
compute_classification_metric,
|
|
compute_squad_v2
|
|
)
|
|
|
|
DataClassType = NewType("DataClassType", Any)
|
|
logger = logging.get_logger(__name__)
|
|
|
|
class SketchReader(BaseReader):
|
|
name: str = "sketch"
|
|
|
|
def postprocess(
|
|
self,
|
|
output: Union[np.ndarray, EvalLoopOutput],
|
|
eval_examples: datasets.Dataset,
|
|
eval_dataset: datasets.Dataset,
|
|
mode: str = "evaluate",
|
|
) -> Union[EvalPrediction, Dict[str, float]]:
|
|
"""
|
|
Postprocess the output of the SketchReader model.
|
|
|
|
Args:
|
|
output (Union[np.ndarray, EvalLoopOutput]): The model output.
|
|
eval_examples (datasets.Dataset): The evaluation examples.
|
|
eval_dataset (datasets.Dataset): The evaluation dataset.
|
|
mode (str, optional): The mode of operation. Defaults to "evaluate".
|
|
|
|
Returns:
|
|
Union[EvalPrediction, Dict[str, float]]: The evaluation prediction or the final map.
|
|
"""
|
|
|
|
|
|
|
|
|
|
if isinstance(output, EvalLoopOutput):
|
|
logits = output.predictions
|
|
else:
|
|
logits = output
|
|
|
|
|
|
example_id_to_index = {k: i for i, k in enumerate(eval_examples[C.ID_COLUMN_NAME])}
|
|
|
|
|
|
features_per_example = collections.defaultdict(list)
|
|
for i, feature in enumerate(eval_dataset):
|
|
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
|
|
|
|
|
count_map = {k: len(v) for k, v in features_per_example.items()}
|
|
|
|
|
|
logits_ans = np.zeros(len(count_map))
|
|
logits_na = np.zeros(len(count_map))
|
|
for example_index, example in enumerate(tqdm(eval_examples)):
|
|
feature_indices = features_per_example[example_index]
|
|
n_strides = count_map[example_index]
|
|
logits_ans[example_index] += logits[example_index, 0] / n_strides
|
|
logits_na[example_index] += logits[example_index, 1] / n_strides
|
|
|
|
|
|
score_ext = logits_ans - logits_na
|
|
|
|
|
|
final_map = dict(zip(eval_examples[C.ID_COLUMN_NAME], score_ext.tolist()))
|
|
with open(os.path.join(self.args.output_dir, C.SCORE_EXT_FILE_NAME), "w") as writer:
|
|
writer.write(json.dumps(final_map, indent=4) + "\n")
|
|
|
|
if mode == "evaluate":
|
|
return EvalPrediction(
|
|
predictions=logits, label_ids=output.label_ids,
|
|
)
|
|
else:
|
|
return final_map
|
|
|
|
class IntensiveReader(BaseReader):
|
|
name: str = "intensive"
|
|
|
|
def postprocess(
|
|
self,
|
|
output: EvalLoopOutput,
|
|
eval_examples: datasets.Dataset,
|
|
eval_dataset: datasets.Dataset,
|
|
log_level: int = logging.WARNING,
|
|
mode: str = "evaluate",
|
|
) -> Union[List[Dict[str, Any]], EvalPrediction]:
|
|
"""
|
|
Post-processing step for the internal front verification (I-FV) and formatting the results.
|
|
|
|
Args:
|
|
output (EvalLoopOutput): The output of the model's evaluation loop.
|
|
eval_examples (datasets.Dataset): The evaluation examples.
|
|
eval_dataset (datasets.Dataset): The evaluation dataset.
|
|
log_level (int, optional): The logging level. Defaults to logging.WARNING.
|
|
mode (str, optional): The mode of the post-processing. Defaults to "evaluate".
|
|
|
|
Returns:
|
|
Union[List[Dict[str, Any]], EvalPrediction]: The formatted predictions or the evaluation prediction.
|
|
"""
|
|
|
|
predictions, nbest_json, scores_diff_json = self.compute_predictions(
|
|
eval_examples,
|
|
eval_dataset,
|
|
output.predictions,
|
|
version_2_with_negative=self.data_args.version_2_with_negative,
|
|
n_best_size=self.data_args.n_best_size,
|
|
max_answer_length=self.data_args.max_answer_length,
|
|
null_score_diff_threshold=self.data_args.null_score_diff_threshold,
|
|
output_dir=self.args.output_dir,
|
|
log_level=log_level,
|
|
n_tops=(self.data_args.start_n_top, self.data_args.end_n_top),
|
|
)
|
|
|
|
|
|
if mode == "retro_inference":
|
|
return nbest_json, scores_diff_json
|
|
|
|
|
|
if self.data_args.version_2_with_negative:
|
|
formatted_predictions = [
|
|
{
|
|
"id": k,
|
|
"prediction_text": v,
|
|
"no_answer_probability": scores_diff_json[k],
|
|
}
|
|
for k, v in predictions.items()
|
|
]
|
|
else:
|
|
formatted_predictions = [
|
|
{"id": k, "prediction_text": v} for k, v in predictions.items()
|
|
]
|
|
|
|
|
|
if mode == "predict":
|
|
return formatted_predictions
|
|
|
|
|
|
references = [
|
|
{"id": ex[C.ID_COLUMN_NAME], "answers": ex[C.ANSWER_COLUMN_NAME]}
|
|
for ex in eval_examples
|
|
]
|
|
return EvalPrediction(
|
|
predictions=formatted_predictions, label_ids=references
|
|
)
|
|
|
|
def compute_predictions(
|
|
self,
|
|
examples: datasets.Dataset,
|
|
features: datasets.Dataset,
|
|
predictions: Tuple[np.ndarray, np.ndarray],
|
|
version_2_with_negative: bool = False,
|
|
n_best_size: int = 20,
|
|
max_answer_length: int = 30,
|
|
null_score_diff_threshold: float = 0.0,
|
|
output_dir: Optional[str] = None,
|
|
log_level: Optional[int] = logging.WARNING,
|
|
n_tops: Tuple[int, int] = (-1, -1),
|
|
use_choice_logits: bool = False,
|
|
):
|
|
"""
|
|
Compute predictions for a given set of examples based on the provided features and model predictions.
|
|
|
|
Args:
|
|
examples (datasets.Dataset): The dataset containing the examples.
|
|
features (datasets.Dataset): The dataset containing the features.
|
|
predictions (Tuple[np.ndarray, np.ndarray]): A tuple containing the start logits, end logits, and choice logits.
|
|
version_2_with_negative (bool, optional): Whether to use version 2 with negative predictions. Defaults to False.
|
|
n_best_size (int, optional): The number of top predictions to consider. Defaults to 20.
|
|
max_answer_length (int, optional): The maximum length of the answer. Defaults to 30.
|
|
null_score_diff_threshold (float, optional): The score difference threshold for the null prediction. Defaults to 0.0.
|
|
output_dir (Optional[str], optional): The directory to save the predictions. Defaults to None.
|
|
log_level (Optional[int], optional): The log level. Defaults to logging.WARNING.
|
|
n_tops (Tuple[int, int], optional): The number of top predictions to consider for each example. Defaults to (-1, -1).
|
|
use_choice_logits (bool, optional): Whether to use choice logits. Defaults to False.
|
|
|
|
Returns:
|
|
Tuple[Dict[str, str], Dict[str, List[Dict[str, Union[str, float]]]], Dict[str, float]]: A tuple containing the all predictions, all n-best predictions, and scores difference.
|
|
|
|
Raises:
|
|
ValueError: If the length of predictions is not 2 or 3.
|
|
"""
|
|
if len(predictions) not in [2, 3]:
|
|
raise ValueError(
|
|
"`predictions` should be a tuple with two elements (start_logits, end_logits) or three elements (start_logits, end_logits, choice_logits)."
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_start_logits, all_end_logits = predictions[:2]
|
|
all_choice_logits = None
|
|
if len(predictions) == 3:
|
|
all_choice_logits = predictions[-1]
|
|
|
|
|
|
|
|
|
|
example_id_to_index = {k: i for i, k in enumerate(examples[C.ID_COLUMN_NAME])}
|
|
features_per_example = collections.defaultdict(list)
|
|
for i, feature in enumerate(features):
|
|
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
|
|
|
all_predictions = collections.OrderedDict()
|
|
all_nbest_json = collections.OrderedDict()
|
|
scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
|
|
|
|
|
|
logger.setLevel(log_level)
|
|
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
|
|
|
|
|
for example_index, example in enumerate(tqdm(examples)):
|
|
|
|
feature_indices = features_per_example[example_index]
|
|
|
|
min_null_prediction = None
|
|
prelim_predictions = []
|
|
|
|
|
|
for feature_index in feature_indices:
|
|
|
|
start_logits = all_start_logits[feature_index]
|
|
end_logits = all_end_logits[feature_index]
|
|
|
|
feature_null_score = start_logits[0] + end_logits[0]
|
|
if all_choice_logits is not None:
|
|
choice_logits = all_choice_logits[feature_index]
|
|
if use_choice_logits:
|
|
feature_null_score = choice_logits[1]
|
|
|
|
|
|
|
|
offset_mapping = features[feature_index]["offset_mapping"]
|
|
|
|
|
|
|
|
|
|
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
|
|
|
|
|
if (
|
|
min_null_prediction is None or
|
|
min_null_prediction["score"] > feature_null_score
|
|
):
|
|
min_null_prediction = {
|
|
"offsets": (0, 0),
|
|
"score": feature_null_score,
|
|
"start_logit": start_logits[0],
|
|
"end_logit": end_logits[0],
|
|
}
|
|
|
|
|
|
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
|
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
|
for start_index in start_indexes:
|
|
for end_index in end_indexes:
|
|
|
|
|
|
|
|
if (
|
|
start_index >= len(offset_mapping) or
|
|
end_index >= len(offset_mapping) or
|
|
offset_mapping[start_index] is None or
|
|
offset_mapping[end_index] is None
|
|
):
|
|
continue
|
|
|
|
if (
|
|
end_index < start_index or
|
|
end_index - start_index + 1 > max_answer_length
|
|
):
|
|
continue
|
|
|
|
if (
|
|
token_is_max_context is not None and
|
|
not token_is_max_context.get(str(start_index), False)
|
|
):
|
|
continue
|
|
|
|
prelim_predictions.append(
|
|
{
|
|
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
|
"score": start_logits[start_index] + end_logits[end_index],
|
|
"start_logit": start_logits[start_index],
|
|
"end_logit": end_logits[end_index],
|
|
}
|
|
)
|
|
|
|
if version_2_with_negative:
|
|
|
|
prelim_predictions.append(min_null_prediction)
|
|
null_score = min_null_prediction["score"]
|
|
|
|
|
|
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
|
|
|
|
|
if version_2_with_negative and not any(p["offsets"] == (0, 0) for p in predictions):
|
|
predictions.append(min_null_prediction)
|
|
|
|
|
|
context = example["context"]
|
|
for pred in predictions:
|
|
offsets = pred.pop("offsets")
|
|
pred["text"] = context[offsets[0] : offsets[1]]
|
|
|
|
|
|
|
|
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
|
|
predictions.insert(0, {"text": "", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0,})
|
|
|
|
|
|
|
|
|
|
scores = np.array([pred.pop("score") for pred in predictions])
|
|
exp_scores = np.exp(scores - np.max(scores))
|
|
probs = exp_scores / exp_scores.sum()
|
|
|
|
|
|
for prob, pred in zip(probs, predictions):
|
|
pred["probability"] = prob
|
|
|
|
|
|
if not version_2_with_negative:
|
|
all_predictions[example[C.ID_COLUMN_NAME]] = predictions[0]["text"]
|
|
else:
|
|
|
|
i = 0
|
|
try:
|
|
while predictions[i]["text"] == "":
|
|
i += 1
|
|
except:
|
|
i = 0
|
|
best_non_null_pred = predictions[i]
|
|
|
|
|
|
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
|
|
scores_diff_json[example[C.ID_COLUMN_NAME]] = float(score_diff)
|
|
if score_diff > null_score_diff_threshold:
|
|
all_predictions[example[C.ID_COLUMN_NAME]] = ""
|
|
else:
|
|
all_predictions[example[C.ID_COLUMN_NAME]] = best_non_null_pred["text"]
|
|
|
|
|
|
all_nbest_json[example[C.ID_COLUMN_NAME]] = [
|
|
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
|
for pred in predictions
|
|
]
|
|
|
|
|
|
if output_dir is not None:
|
|
if not os.path.isdir(output_dir):
|
|
raise EnvironmentError(f"{output_dir} is not a directory.")
|
|
|
|
prediction_file = os.path.join(output_dir, C.INTENSIVE_PRED_FILE_NAME)
|
|
nbest_file = os.path.join(output_dir, C.NBEST_PRED_FILE_NAME)
|
|
if version_2_with_negative:
|
|
null_odds_file = os.path.join(output_dir, C.SCORE_DIFF_FILE_NAME)
|
|
|
|
logger.info(f"Saving predictions to {prediction_file}.")
|
|
with open(prediction_file, "w") as writer:
|
|
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
|
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
|
with open(nbest_file, "w") as writer:
|
|
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
|
if version_2_with_negative:
|
|
logger.info(f"Saving null_odds to {null_odds_file}.")
|
|
with open(null_odds_file, "w") as writer:
|
|
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
|
|
|
return all_predictions, all_nbest_json, scores_diff_json
|
|
|
|
class RearVerifier:
|
|
|
|
def __init__(
|
|
self,
|
|
beta1: int = 1,
|
|
beta2: int = 1,
|
|
best_cof: int = 1,
|
|
thresh: float = 0.0,
|
|
):
|
|
self.beta1 = beta1
|
|
self.beta2 = beta2
|
|
self.best_cof = best_cof
|
|
self.thresh = thresh
|
|
|
|
def __call__(
|
|
self,
|
|
score_ext: Dict[str, float],
|
|
score_diff: Dict[str, float],
|
|
nbest_preds: Dict[str, Dict[int, Dict[str, float]]]
|
|
):
|
|
"""
|
|
This function takes in the score_ext and score_diff dictionaries, and the nbest_preds dictionary.
|
|
It performs a verification process on the input data and returns the output predictions and scores.
|
|
|
|
Args:
|
|
score_ext (Dict[str, float]): A dictionary containing the extended scores.
|
|
score_diff (Dict[str, float]): A dictionary containing the score differences.
|
|
nbest_preds (Dict[str, Dict[int, Dict[str, float]]]): A dictionary containing the nbest predictions.
|
|
|
|
Returns:
|
|
Tuple[Dict[str, str], Dict[str, float]]: A tuple containing the output predictions and scores.
|
|
"""
|
|
|
|
all_scores = collections.OrderedDict()
|
|
|
|
assert score_ext.keys() == score_diff.keys()
|
|
|
|
for key in score_ext.keys():
|
|
if key not in all_scores:
|
|
all_scores[key] = []
|
|
all_scores[key].extend(
|
|
[self.beta1 * score_ext[key],
|
|
self.beta2 * score_diff[key]]
|
|
)
|
|
|
|
output_scores = {}
|
|
for key, scores in all_scores.items():
|
|
mean_score = sum(scores) / float(len(scores))
|
|
output_scores[key] = mean_score
|
|
|
|
|
|
all_nbest = collections.OrderedDict()
|
|
|
|
for key, entries in nbest_preds.items():
|
|
if key not in all_nbest:
|
|
all_nbest[key] = collections.defaultdict(float)
|
|
for entry in entries:
|
|
prob = self.best_cof * entry["probability"]
|
|
all_nbest[key][entry["text"]] += prob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_predictions = {}
|
|
for key, entry_map in all_nbest.items():
|
|
sorted_texts = sorted(
|
|
entry_map.keys(), key=lambda x: entry_map[x], reverse=True
|
|
)
|
|
best_text = sorted_texts[0]
|
|
output_predictions[key] = best_text
|
|
|
|
|
|
for qid in output_predictions.keys():
|
|
if output_scores[qid] > self.thresh:
|
|
output_predictions[qid] = ""
|
|
|
|
return output_predictions, output_scores
|
|
|
|
|
|
class RetroReader:
|
|
def __init__(
|
|
self,
|
|
args,
|
|
sketch_reader: SketchReader,
|
|
intensive_reader: IntensiveReader,
|
|
rear_verifier: RearVerifier,
|
|
prep_fn: Tuple[Callable, Callable],
|
|
):
|
|
self.args = args
|
|
|
|
self.sketch_reader = sketch_reader
|
|
self.intensive_reader = intensive_reader
|
|
self.rear_verifier = rear_verifier
|
|
|
|
|
|
self.sketch_prep_fn, self.intensive_prep_fn = prep_fn
|
|
|
|
@classmethod
|
|
def load(
|
|
cls,
|
|
train_examples=None,
|
|
sketch_train_dataset=None,
|
|
intensive_train_dataset=None,
|
|
eval_examples=None,
|
|
sketch_eval_dataset=None,
|
|
intensive_eval_dataset=None,
|
|
config_file: str = C.DEFAULT_CONFIG_FILE,
|
|
device: str = "cpu",
|
|
):
|
|
|
|
parser = HfArgumentParser([RetroArguments, TrainingArguments])
|
|
retro_args, training_args = parser.parse_yaml_file(yaml_file=config_file)
|
|
if training_args.run_name is not None and "," in training_args.run_name:
|
|
sketch_run_name, intensive_run_name = training_args.run_name.split(",")
|
|
else:
|
|
sketch_run_name, intensive_run_name = None, None
|
|
if training_args.metric_for_best_model is not None and "," in training_args.metric_for_best_model:
|
|
sketch_best_metric, intensive_best_metric = training_args.metric_for_best_model.split(",")
|
|
else:
|
|
sketch_best_metric, intensive_best_metric = None, None
|
|
sketch_training_args = copy.deepcopy(training_args)
|
|
intensive_training_args = training_args
|
|
|
|
print(f"Loading sketch tokenizer from {retro_args.sketch_tokenizer_name} ...")
|
|
sketch_tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
pretrained_model_name_or_path=retro_args.sketch_tokenizer_name,
|
|
use_auth_token=retro_args.use_auth_token,
|
|
revision=retro_args.sketch_revision,
|
|
|
|
)
|
|
|
|
|
|
|
|
if train_examples is not None and sketch_train_dataset is None:
|
|
print("[Sketch] Preprocessing train examples ...")
|
|
sketch_prep_fn, is_batched = get_sketch_features(sketch_tokenizer, "train", retro_args)
|
|
sketch_train_dataset = train_examples.map(
|
|
sketch_prep_fn,
|
|
batched=is_batched,
|
|
remove_columns=train_examples.column_names,
|
|
num_proc=retro_args.preprocessing_num_workers,
|
|
load_from_cache_file=not retro_args.overwrite_cache,
|
|
)
|
|
|
|
if eval_examples is not None and sketch_eval_dataset is None:
|
|
print("[Sketch] Preprocessing eval examples ...")
|
|
sketch_prep_fn, is_batched = get_sketch_features(sketch_tokenizer, "eval", retro_args)
|
|
sketch_eval_dataset = eval_examples.map(
|
|
sketch_prep_fn,
|
|
batched=is_batched,
|
|
remove_columns=eval_examples.column_names,
|
|
num_proc=retro_args.preprocessing_num_workers,
|
|
load_from_cache_file=not retro_args.overwrite_cache,
|
|
)
|
|
|
|
print("[Sketch] Preprocessing inference examples ...")
|
|
sketch_prep_fn, _ = get_sketch_features(sketch_tokenizer, "test", retro_args)
|
|
|
|
|
|
sketch_model_cls = retro_args.sketch_model_cls
|
|
print(f"[Sketch] Loading sketch model from {retro_args.sketch_model_name} ...")
|
|
sketch_model = sketch_model_cls.from_pretrained(
|
|
pretrained_model_name_or_path=retro_args.sketch_model_name,
|
|
use_auth_token=retro_args.use_auth_token,
|
|
revision=retro_args.sketch_revision,
|
|
)
|
|
sketch_model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sketch_training_args.run_name = sketch_run_name
|
|
sketch_training_args.output_dir += "/sketch"
|
|
sketch_training_args.metric_for_best_model = sketch_best_metric
|
|
sketch_reader = SketchReader(
|
|
model=sketch_model,
|
|
args=sketch_training_args,
|
|
train_dataset=sketch_train_dataset,
|
|
eval_dataset=sketch_eval_dataset,
|
|
eval_examples=eval_examples,
|
|
data_args=retro_args,
|
|
tokenizer=sketch_tokenizer,
|
|
compute_metrics=compute_classification_metric,
|
|
)
|
|
|
|
print(f"[Intensive] Loading intensive tokenizer from {retro_args.intensive_tokenizer_name} ...")
|
|
intensive_tokenizer = AutoTokenizer.from_pretrained(
|
|
pretrained_model_name_or_path=retro_args.intensive_tokenizer_name,
|
|
use_auth_token=retro_args.use_auth_token,
|
|
revision=retro_args.intensive_revision,
|
|
|
|
)
|
|
|
|
|
|
|
|
if train_examples is not None and intensive_train_dataset is None:
|
|
print("[Intensive] Preprocessing train examples ...")
|
|
intensive_prep_fn, is_batched = get_intensive_features(intensive_tokenizer, "train", retro_args)
|
|
intensive_train_dataset = train_examples.map(
|
|
intensive_prep_fn,
|
|
batched=is_batched,
|
|
remove_columns=train_examples.column_names,
|
|
num_proc=retro_args.preprocessing_num_workers,
|
|
load_from_cache_file=not retro_args.overwrite_cache,
|
|
)
|
|
|
|
if eval_examples is not None and intensive_eval_dataset is None:
|
|
print("[Intensive] Preprocessing eval examples ...")
|
|
intensive_prep_fn, is_batched = get_intensive_features(intensive_tokenizer, "eval", retro_args)
|
|
intensive_eval_dataset = eval_examples.map(
|
|
intensive_prep_fn,
|
|
batched=is_batched,
|
|
remove_columns=eval_examples.column_names,
|
|
num_proc=retro_args.preprocessing_num_workers,
|
|
load_from_cache_file=not retro_args.overwrite_cache,
|
|
)
|
|
|
|
print("[Intensive] Preprocessing test examples ...")
|
|
intensive_prep_fn, _ = get_intensive_features(intensive_tokenizer, "test", retro_args)
|
|
|
|
|
|
intensive_model_cls = retro_args.intensive_model_cls
|
|
print(f"[Intensive] Loading intensive model from {retro_args.intensive_model_name} ...")
|
|
intensive_model = intensive_model_cls.from_pretrained(
|
|
pretrained_model_name_or_path=retro_args.intensive_model_name,
|
|
use_auth_token=retro_args.use_auth_token,
|
|
revision=retro_args.intensive_revision,
|
|
)
|
|
intensive_model.to(device)
|
|
|
|
|
|
if retro_args.intensive_model_mode == "finetune":
|
|
pass
|
|
else:
|
|
print("[Intensive] Freezing intensive weights for transfer learning ...")
|
|
for param in list(intensive_model.parameters())[:-5]:
|
|
param.requires_grad_(False)
|
|
|
|
|
|
intensive_training_args.run_name = intensive_run_name
|
|
intensive_training_args.output_dir += "/intensive"
|
|
intensive_training_args.metric_for_best_model = intensive_best_metric
|
|
intensive_reader = IntensiveReader(
|
|
model=intensive_model,
|
|
args=intensive_training_args,
|
|
train_dataset=intensive_train_dataset,
|
|
eval_dataset=intensive_eval_dataset,
|
|
eval_examples=eval_examples,
|
|
data_args=retro_args,
|
|
tokenizer=intensive_tokenizer,
|
|
compute_metrics=compute_squad_v2,
|
|
)
|
|
|
|
|
|
rear_verifier = RearVerifier(
|
|
beta1=retro_args.beta1,
|
|
beta2=retro_args.beta2,
|
|
best_cof=retro_args.best_cof,
|
|
thresh=retro_args.rear_threshold,
|
|
)
|
|
|
|
return cls(
|
|
args=retro_args,
|
|
sketch_reader=sketch_reader,
|
|
intensive_reader=intensive_reader,
|
|
rear_verifier=rear_verifier,
|
|
prep_fn=(sketch_prep_fn, intensive_prep_fn),
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
query: str,
|
|
context: Union[str, List[str]],
|
|
return_submodule_outputs: bool = False,
|
|
) -> Tuple[Any]:
|
|
"""
|
|
Performs inference on a given query and context.
|
|
|
|
Args:
|
|
query (str): The query to be answered.
|
|
context (Union[str, List[str]]): The context in which the query is asked.
|
|
If it is a list of strings, they will be joined together.
|
|
return_submodule_outputs (bool, optional): Whether to return the outputs of the submodules.
|
|
Defaults to False.
|
|
|
|
Returns:
|
|
Tuple[Any]: A tuple containing the predictions, scores, and optionally the outputs of the submodules.
|
|
"""
|
|
|
|
if isinstance(context, list):
|
|
context = " ".join(context)
|
|
|
|
|
|
predict_examples = datasets.Dataset.from_dict({
|
|
"example_id": ["0"],
|
|
C.ID_COLUMN_NAME: ["id-01"],
|
|
C.QUESTION_COLUMN_NAME: [query],
|
|
C.CONTEXT_COLUMN_NAME: [context],
|
|
})
|
|
|
|
|
|
return self.inference(predict_examples, return_submodule_outputs=return_submodule_outputs)
|
|
|
|
def train(self, module: str = "all", device: str = "cpu"):
|
|
"""
|
|
Trains the specified module.
|
|
|
|
Args:
|
|
module (str, optional): The module to train. Defaults to "all".
|
|
Possible values: "all", "sketch", "intensive".
|
|
"""
|
|
|
|
def wandb_finish(module):
|
|
"""
|
|
Finishes the Weights & Biases (wandb) run for the given module.
|
|
|
|
Args:
|
|
module: The module for which to finish the wandb run.
|
|
"""
|
|
for callback in module.callback_handler.callbacks:
|
|
|
|
if "wandb" in str(type(callback)).lower():
|
|
|
|
if hasattr(callback, '_wandb'):
|
|
callback._wandb.finish()
|
|
|
|
callback._initialized = False
|
|
|
|
print(f"Starting training for module: {module}")
|
|
|
|
if module.lower() in ["all", "sketch"]:
|
|
print("Training sketch reader")
|
|
self.sketch_reader.train()
|
|
|
|
print("Saving sketch reader")
|
|
self.sketch_reader.save_model()
|
|
print("Saving sketch reader state")
|
|
self.sketch_reader.save_state()
|
|
|
|
self.sketch_reader.free_memory()
|
|
wandb_finish(self.sketch_reader)
|
|
print("Sketch reader training finished")
|
|
|
|
if module.lower() in ["all", "intensive"]:
|
|
print("Training intensive reader")
|
|
self.intensive_reader.train()
|
|
|
|
print("Saving intensive reader")
|
|
self.intensive_reader.save_model()
|
|
|
|
print("Saving intensive reader state")
|
|
self.intensive_reader.save_state()
|
|
|
|
self.intensive_reader.free_memory()
|
|
wandb_finish(self.intensive_reader)
|
|
print("Intensive reader training finished")
|
|
print("Training finished")
|
|
|
|
def inference(self, predict_examples: datasets.Dataset, return_submodule_outputs: bool = True) -> Tuple[Any]:
|
|
"""
|
|
Performs inference on the given predict examples dataset.
|
|
|
|
Args:
|
|
predict_examples (datasets.Dataset): The dataset containing the predict examples.
|
|
return_submodule_outputs (bool, optional): Whether to return the outputs of the submodules. Defaults to False.
|
|
|
|
Returns:
|
|
Tuple[Any]: A tuple containing the predictions, scores, and optionally the outputs (score_ext, nbest_preds, score_diff) of the submodules.
|
|
"""
|
|
|
|
if "example_id" not in predict_examples.column_names:
|
|
predict_examples = predict_examples.map(
|
|
lambda _, i: {"example_id": str(i)},
|
|
with_indices=True,
|
|
)
|
|
|
|
|
|
sketch_features = predict_examples.map(
|
|
self.sketch_prep_fn,
|
|
batched=True,
|
|
remove_columns=predict_examples.column_names,
|
|
)
|
|
intensive_features = predict_examples.map(
|
|
self.intensive_prep_fn,
|
|
batched=True,
|
|
remove_columns=predict_examples.column_names,
|
|
)
|
|
|
|
|
|
|
|
score_ext = self.sketch_reader.predict(sketch_features, predict_examples)
|
|
|
|
|
|
|
|
|
|
nbest_preds, score_diff = self.intensive_reader.predict(
|
|
intensive_features, predict_examples, mode="retro_inference")
|
|
|
|
|
|
|
|
predictions, scores = self.rear_verifier(score_ext, score_diff, nbest_preds)
|
|
outputs = (predictions, scores)
|
|
|
|
|
|
if return_submodule_outputs:
|
|
outputs += (score_ext, nbest_preds, score_diff)
|
|
|
|
return outputs
|
|
|
|
def evaluate(self, test_dataset: datasets.Dataset) -> dict:
|
|
"""
|
|
Evaluates the model on the given test dataset.
|
|
|
|
Args:
|
|
test_dataset (Dataset): The dataset containing the test examples and ground truth answers.
|
|
|
|
Returns:
|
|
dict: A dictionary containing the evaluation metrics.
|
|
"""
|
|
|
|
predictions, scores, score_ext, nbest_preds, score_diff = self.inference(test_dataset, return_submodule_outputs=True)
|
|
|
|
|
|
ground_truths = test_dataset[C.ANSWER_COLUMN_NAME]
|
|
|
|
formatted_predictions = []
|
|
for example, pred in zip(test_dataset, predictions):
|
|
formatted_predictions.append({
|
|
'id': example[C.ID_COLUMN_NAME],
|
|
'prediction_text': pred,
|
|
'no_answer_probability': 0.0
|
|
})
|
|
|
|
formatted_references = []
|
|
for example in test_dataset:
|
|
formatted_references.append({
|
|
'id': example[C.ID_COLUMN_NAME],
|
|
'answers': example[C.ANSWER_COLUMN_NAME],
|
|
})
|
|
|
|
|
|
return compute_squad_v2(EvalPrediction(predictions=formatted_predictions, label_ids=formatted_references))
|
|
|
|
@property
|
|
def null_score_diff_threshold(self):
|
|
return self.args.null_score_diff_threshold
|
|
|
|
@null_score_diff_threshold.setter
|
|
def null_score_diff_threshold(self, val):
|
|
self.args.null_score_diff_threshold = val
|
|
|
|
@property
|
|
def n_best_size(self):
|
|
return self.args.n_best_size
|
|
|
|
@n_best_size.setter
|
|
def n_best_size(self, val):
|
|
self.args.n_best_size = val
|
|
|
|
@property
|
|
def beta1(self):
|
|
return self.rear_verifier.beta1
|
|
|
|
@beta1.setter
|
|
def beta1(self, val):
|
|
self.rear_verifier.beta1 = val
|
|
|
|
@property
|
|
def beta2(self):
|
|
return self.rear_verifier.beta2
|
|
|
|
@beta2.setter
|
|
def beta2(self, val):
|
|
self.rear_verifier.beta2 = val
|
|
|
|
@property
|
|
def best_cof(self):
|
|
return self.rear_verifier.best_cof
|
|
|
|
@best_cof.setter
|
|
def best_cof(self, val):
|
|
self.rear_verifier.best_cof = val
|
|
|
|
@property
|
|
def rear_threshold(self):
|
|
return self.rear_verifier.thresh
|
|
|
|
@rear_threshold.setter
|
|
def rear_threshold(self, val):
|
|
self.rear_verifier.thresh = val |