|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel |
|
from diffusers.utils.testing_utils import load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device |
|
|
|
from ...pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS |
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = RePaintPipeline |
|
params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - { |
|
"latents", |
|
"num_images_per_prompt", |
|
"callback", |
|
"callback_steps", |
|
} |
|
batch_params = IMAGE_INPAINTING_BATCH_PARAMS |
|
test_cpu_offload = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
torch.manual_seed(0) |
|
unet = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
scheduler = RePaintScheduler() |
|
components = {"unet": unet, "scheduler": scheduler} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32)) |
|
image = torch.from_numpy(image).to(device=device, dtype=torch.float32) |
|
mask = (image > 0).to(device=device, dtype=torch.float32) |
|
inputs = { |
|
"image": image, |
|
"mask_image": mask, |
|
"generator": generator, |
|
"num_inference_steps": 5, |
|
"eta": 0.0, |
|
"jump_length": 2, |
|
"jump_n_sample": 2, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_repaint(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = RePaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
@skip_mps |
|
def test_save_load_local(self): |
|
return super().test_save_load_local() |
|
|
|
|
|
|
|
@unittest.skip("non-deterministic pipeline") |
|
def test_inference_batch_single_identical(self): |
|
return super().test_inference_batch_single_identical() |
|
|
|
@skip_mps |
|
def test_dict_tuple_outputs_equivalent(self): |
|
return super().test_dict_tuple_outputs_equivalent() |
|
|
|
@skip_mps |
|
def test_save_load_optional_components(self): |
|
return super().test_save_load_optional_components() |
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
return super().test_attention_slicing_forward_pass() |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class RepaintPipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_celebahq(self): |
|
original_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" |
|
"repaint/celeba_hq_256.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" |
|
"repaint/celeba_hq_256_result.npy" |
|
) |
|
|
|
model_id = "google/ddpm-ema-celebahq-256" |
|
unet = UNet2DModel.from_pretrained(model_id) |
|
scheduler = RePaintScheduler.from_pretrained(model_id) |
|
|
|
repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device) |
|
repaint.set_progress_bar_config(disable=None) |
|
repaint.enable_attention_slicing() |
|
|
|
generator = torch.manual_seed(0) |
|
output = repaint( |
|
original_image, |
|
mask_image, |
|
num_inference_steps=250, |
|
eta=0.0, |
|
jump_length=10, |
|
jump_n_sample=10, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
assert np.abs(expected_image - image).mean() < 1e-2 |
|
|