File size: 4,274 Bytes
0a9bdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import math
import numpy as np
import cv2


eps = 0.01

def smart_width(d):
    if d<5:
        return 1
    elif d<10:
        return 2
    elif d<20:
        return 3
    elif d<40:
        return 4
    elif d<80:
        return 5
    elif d<160:
        return 6  
    elif d<320:
        return 7 
    else:
        return 8



def draw_bodypose(canvas, candidate, subset):
    H, W, C = canvas.shape
    candidate = np.array(candidate)
    subset = np.array(subset)

    limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
               [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
               [1, 16], [16, 18], [3, 17], [6, 18]]

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
              [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
              [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

    for i in range(17):
        for n in range(len(subset)):
            index = subset[n][np.array(limbSeq[i]) - 1]
            if -1 in index:
                continue
            Y = candidate[index.astype(int), 0] * float(W)
            X = candidate[index.astype(int), 1] * float(H)
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))

            width = smart_width(length)
            polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), width), int(angle), 0, 360, 1)
            cv2.fillConvexPoly(canvas, polygon, colors[i])

    canvas = (canvas * 0.6).astype(np.uint8)

    for i in range(18):
        for n in range(len(subset)):
            index = int(subset[n][i])
            if index == -1:
                continue
            x, y = candidate[index][0:2]
            x = int(x * W)
            y = int(y * H)
            radius = 4
            cv2.circle(canvas, (int(x), int(y)), radius, colors[i], thickness=-1)

    return canvas


def draw_handpose(canvas, all_hand_peaks):
    import matplotlib
    
    H, W, C = canvas.shape

    edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
             [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
    
    # (person_number*2, 21, 2)
    for i in range(len(all_hand_peaks)):
        peaks = all_hand_peaks[i]
        peaks = np.array(peaks)
        
        for ie, e in enumerate(edges):

            x1, y1 = peaks[e[0]]
            x2, y2 = peaks[e[1]]
            
            x1 = int(x1 * W)
            y1 = int(y1 * H)
            x2 = int(x2 * W)
            y2 = int(y2 * H)
            if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
                length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
                width = smart_width(length)
                cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=width)

        for _, keyponit in enumerate(peaks):
            x, y = keyponit

            x = int(x * W)
            y = int(y * H)
            if x > eps and y > eps:
                radius = 3
                cv2.circle(canvas, (x, y), radius, (0, 0, 255), thickness=-1)
    return canvas


def draw_facepose(canvas, all_lmks):
    H, W, C = canvas.shape
    for lmks in all_lmks:
        lmks = np.array(lmks)
        for lmk in lmks:
            x, y = lmk
            x = int(x * W)
            y = int(y * H)
            if x > eps and y > eps:
                radius = 3
                cv2.circle(canvas, (x, y), radius, (255, 255, 255), thickness=-1)
    return canvas




# Calculate the resolution 
def size_calculate(h, w, resolution):
    
    H = float(h)
    W = float(w)

    # resize the short edge to the resolution
    k = float(resolution) / min(H, W) # short edge
    H *= k
    W *= k

    # resize to the nearest integer multiple of 64
    H = int(np.round(H / 64.0)) * 64
    W = int(np.round(W / 64.0)) * 64
    return H, W



def warpAffine_kps(kps, M):
    a = M[:,:2]
    t = M[:,2]
    kps = np.dot(kps, a.T) + t
    return kps