| 
							 | 
						import gradio as gr | 
					
					
						
						| 
							 | 
						import huggingface_hub | 
					
					
						
						| 
							 | 
						from PIL import Image | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						import onnxruntime as rt | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import csv | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MODEL_REPO = 'toynya/Z3D-E621-Convnext' | 
					
					
						
						| 
							 | 
						THRESHOLD = 0.5 | 
					
					
						
						| 
							 | 
						DESCRIPTION = """ | 
					
					
						
						| 
							 | 
						This is a demo of https://huggingface.co/toynya/Z3D-E621-Convnext | 
					
					
						
						| 
							 | 
						I am not affiliated with the model author in anyway, this is just a useful tool requested by a user. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def prepare_image(image: Image.Image, target_size: int): | 
					
					
						
						| 
							 | 
							 | 
					
					
						
						| 
							 | 
							image_shape = image.size | 
					
					
						
						| 
							 | 
							max_dim = max(image_shape) | 
					
					
						
						| 
							 | 
							pad_left = (max_dim - image_shape[0]) // 2 | 
					
					
						
						| 
							 | 
							pad_top = (max_dim - image_shape[1]) // 2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255)) | 
					
					
						
						| 
							 | 
							padded_image.paste(image, (pad_left, pad_top)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							 | 
					
					
						
						| 
							 | 
							if max_dim != target_size: | 
					
					
						
						| 
							 | 
								padded_image = padded_image.resize((target_size, target_size), Image.BICUBIC) | 
					
					
						
						| 
							 | 
							 | 
					
					
						
						| 
							 | 
							 | 
					
					
						
						| 
							 | 
							 | 
					
					
						
						| 
							 | 
							image_array = np.asarray(padded_image, dtype=np.float32) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							 | 
					
					
						
						| 
							 | 
							image_array = image_array[:, :, ::-1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							return np.expand_dims(image_array, axis=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def predict(image: Image.Image): | 
					
					
						
						| 
							 | 
							image_array = prepare_image(image, 448) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							image_array = prepare_image(image, 448) | 
					
					
						
						| 
							 | 
							input_name = 'input_1:0' | 
					
					
						
						| 
							 | 
							output_name = 'predictions_sigmoid' | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							result = session.run([output_name], {input_name: image_array}) | 
					
					
						
						| 
							 | 
							result = result[0][0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							scores = {tags[i]: result[i] for i in range(len(result))} | 
					
					
						
						| 
							 | 
							predicted_tags = [tag for tag, score in scores.items() if score > THRESHOLD] | 
					
					
						
						| 
							 | 
							tag_string = ', '.join(predicted_tags) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
							return tag_string, scores | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						print("Downloading model...") | 
					
					
						
						| 
							 | 
						path = Path(huggingface_hub.snapshot_download(MODEL_REPO)) | 
					
					
						
						| 
							 | 
						print("Loading model...") | 
					
					
						
						| 
							 | 
						session = rt.InferenceSession(path / 'model.onnx', providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						with open(path / 'tags-selected.csv', mode='r', encoding='utf-8') as file: | 
					
					
						
						| 
							 | 
							csv_reader = csv.DictReader(file) | 
					
					
						
						| 
							 | 
							tags = [row['name'].strip() for row in csv_reader] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						print("Starting server...") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						gradio_app = gr.Interface( | 
					
					
						
						| 
							 | 
							predict, | 
					
					
						
						| 
							 | 
							inputs=gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), | 
					
					
						
						| 
							 | 
							outputs=[ | 
					
					
						
						| 
							 | 
								gr.Textbox(label="Tag String"), | 
					
					
						
						| 
							 | 
								gr.Label(label="Tag Predictions", num_top_classes=100), | 
					
					
						
						| 
							 | 
							], | 
					
					
						
						| 
							 | 
							title="JoyTag", | 
					
					
						
						| 
							 | 
							description=DESCRIPTION, | 
					
					
						
						| 
							 | 
							allow_flagging="never", | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == '__main__': | 
					
					
						
						| 
							 | 
							gradio_app.launch() | 
					
					
						
						| 
							 | 
						
 |