import gradio as gr #from google.colab import files import cv2 import numpy as np from matplotlib import pyplot as plt from scipy.signal import medfilt # upload input image #def upload_image(): # uploaded = files.upload() # file = next(iter(uploaded)) # img = cv2.imread(file) # return img # display input image #def display_image(img, title="Image"): # img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # convert from BGR to RGB for OpenCV # plt.imshow(img_rgb) # plt.title(title) # plt.axis("off") # plt.show() # convert input image to grayscale to prepare for edge detection def convert_to_grayscale_and_blur(img): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_blurred = cv2.blur(img_gray, (5, 5)) # Gaussian blurring with a kernel size of (9, 3) to reduce noise return img_blurred # detect edges using Laplacian filter def calculate_gradient(img_blurred, threshold=7): laplacian = cv2.Laplacian(img_blurred, cv2.CV_8U) gradient_mask = (laplacian < threshold).astype(np.uint8) return gradient_mask # refine skyline using median filtering and morphological operation def refine_skyline(mask): kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) eroded_mask = cv2.morphologyEx(mask, cv2.MORPH_ERODE, kernel) skyline_mask = cal_skyline(eroded_mask) return skyline_mask # adjust skyline using median filtering to isolate the sky def cal_skyline(mask): h, w = mask.shape for i in range(w): column = mask[:, i] after_median = medfilt(column, kernel_size=21) try: first_white_index = np.where(after_median == 1)[0][0] first_black_index = np.where(after_median == 0)[0][0] if first_black_index > first_white_index: mask[:first_black_index, i] = 1 mask[first_black_index:, i] = 0 except IndexError: continue return mask # extract sky region by applying the mask def get_sky_region(img, mask): sky_region = cv2.bitwise_and(img, img, mask=mask) return sky_region # run in order and show the detected sky region #def sky_detector(img): # display_image(img, "Original Image") # img_blurred = convert_to_grayscale_and_blur(img) # gradient_mask = calculate_gradient(img_blurred) # skyline_mask = refine_skyline(gradient_mask) # sky_region = get_sky_region(img, skyline_mask) # display_image(sky_region, "Sky Region") # main #image = upload_image() #sky_detector(image) # run in order for Gardio def sky_detection(image): img_blurred = convert_to_grayscale_and_blur(image) gradient_mask = calculate_gradient(img_blurred) skyline_mask = refine_skyline(gradient_mask) sky_region = get_sky_region(image, skyline_mask) sky_region_rgb = cv2.cvtColor(sky_region, cv2.COLOR_BGR2RGB) # Convert to RGB for Gradio display return sky_region_rgb # set up Gardio interface interface = gr.Interface(fn=sky_detection, inputs=gr.Image(), outputs="image") interface.launch(share=True)