#!/usr/bin/env python from __future__ import annotations import os import random import gradio as gr import numpy as np import PIL.Image import torch from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler DESCRIPTION = '# Animagine XL' if not torch.cuda.is_available(): DESCRIPTION += '\n
Running on CPU 🥶 This demo does not work on CPU.
' MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv( 'CACHE_EXAMPLES') == '1' USE_TORCH_COMPILE = os.getenv('USE_TORCH_COMPILE') == '1' ENABLE_CPU_OFFLOAD = os.getenv('ENABLE_CPU_OFFLOAD') == '1' MODEL = "Linaqruf/animagine-xl" device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( MODEL, torch_dtype=torch.float16, use_safetensors=True, variant='fp16') pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() else: pipe.to(device) if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode='reduce-overhead', fullgraph=True) else: pipe = None def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def generate(prompt: str, negative_prompt: str = '', prompt_2: str = '', negative_prompt_2: str = '', use_prompt_2: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, target_width: int = 1024, target_height: int = 1024, original_width: int = 4096, original_height: int = 4096, guidance_scale_base: float = 12.0, num_inference_steps_base: int = 50) -> PIL.Image.Image: generator = torch.Generator().manual_seed(seed) if negative_prompt == '': negative_prompt = None # type: ignore if not use_prompt_2: prompt_2 = None # type: ignore negative_prompt_2 = None # type: ignore if negative_prompt_2 == '': negative_prompt_2 = None return pipe(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, target_size=(target_width, target_height), original_size=(original_width, original_height), guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type='pil').images[0] examples = [ 'face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck', 'face focus, bishounen, masterpiece, best quality, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck', ] # choices = [ # "Vertical (9:16)", # "Portrait (4:5)", # "Square (1:1)", # "Photo (4:3)", # "Landscape (3:2)", # "Widescreen (16:9)", # "Cinematic (21:9)", # ] # choice_to_size = { # "Vertical (9:16)": (768, 1344), # "Portrait (4:5)": (912, 1144), # "Square (1:1)": (1024, 1024), # "Photo (4:3)": (1184, 888), # "Landscape (3:2)": (1256, 832), # "Widescreen (16:9)": (1368, 768), # "Cinematic (21:9)": (1568, 672), # } with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button', visible=os.getenv('SHOW_DUPLICATE_BUTTON') == '1') with gr.Row(): with gr.Column(scale=1): prompt = gr.Text( label='Prompt', max_lines=1, placeholder='Enter your prompt', ) negative_prompt = gr.Text( label='Negative Prompt', max_lines=1, placeholder='Enter a negative prompt', value='lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry', ) use_prompt_2 = gr.Checkbox( label='Use prompt 2', value=False ) prompt_2 = gr.Text( label='Prompt 2', max_lines=1, placeholder='Enter your prompt', visible=False, ) negative_prompt_2 = gr.Text( label='Negative prompt 2', max_lines=1, placeholder='Enter a negative prompt', visible=False, ) # with gr.Row(): # aspect_ratio = gr.Dropdown(choices=choices, label="Aspect Ratio Preset", value=choices[2]) with gr.Row(): width = gr.Slider( label='Width', minimum=256, maximum=4096, step=32, value=1024, ) height = gr.Slider( label='Height', minimum=256, maximum=4096, step=32, value=1024, ) with gr.Accordion(label='Advanced Config', open=False): with gr.Accordion(label='Conditioning Resolution', open=False): with gr.Row(): original_width = gr.Slider( label='Original Width', minimum=1024, maximum=4096, step=32, value=4096, ) original_height = gr.Slider( label='Original Height', minimum=1024, maximum=4096, step=32, value=4096, ) with gr.Row(): target_width = gr.Slider( label='Target Width', minimum=1024, maximum=4096, step=32, value=1024, ) target_height = gr.Slider( label='Target Height', minimum=1024, maximum=4096, step=32, value=1024, ) seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label='Randomize seed', value=True) with gr.Row(): guidance_scale_base = gr.Slider( label='Guidance scale', minimum=1, maximum=20, step=0.1, value=12.0) num_inference_steps_base = gr.Slider( label='Number of inference steps', minimum=10, maximum=100, step=1, value=50) with gr.Column(scale=2): with gr.Blocks(): run_button = gr.Button('Generate') result = gr.Image(label='Result', show_label=False) gr.Examples(examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES) use_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_prompt_2, outputs=prompt_2, queue=False, api_name=False, ) use_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_prompt_2, outputs=negative_prompt_2, queue=False, api_name=False, ) inputs = [ prompt, negative_prompt, prompt_2, negative_prompt_2, use_prompt_2, seed, width, height, target_width, target_height, original_width, original_height, guidance_scale_base, num_inference_steps_base, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name='run', ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) prompt_2.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) negative_prompt_2.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) demo.queue(max_size=20).launch()