Spaces:
Runtime error
Runtime error
:twisted_rightwards_arrows: Merge branch 'develop'
Browse files- .env_sample +1 -0
- .gitignore +169 -1
- app.py +116 -28
- requirements.txt +2 -1
.env_sample
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
HF_TOKEN=hf_YOUR_AWESOME_TOKEN
|
.gitignore
CHANGED
@@ -1,3 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
lightning_logs/
|
2 |
*.pth
|
3 |
-
my-awesome-model/
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
# c++ generated files
|
163 |
+
*.out
|
164 |
+
*.exe
|
165 |
+
|
166 |
+
# my custom gitignores
|
167 |
lightning_logs/
|
168 |
*.pth
|
169 |
+
my-awesome-model/
|
170 |
+
my-awesome-model-200/
|
171 |
+
my-awesome-model-4000/
|
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import logging
|
|
|
2 |
import random
|
3 |
from typing import Any
|
4 |
|
@@ -6,15 +7,19 @@ import numpy as np
|
|
6 |
import pandas as pd
|
7 |
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
8 |
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
|
|
|
9 |
from torch.utils.data import DataLoader, Dataset
|
10 |
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
11 |
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
13 |
import torch
|
14 |
from torch import nn
|
15 |
-
from datasets import load_dataset
|
16 |
from huggingface_hub import PyTorchModelHubMixin
|
17 |
|
|
|
|
|
|
|
18 |
timber = logging.getLogger()
|
19 |
# logging.basicConfig(level=logging.DEBUG)
|
20 |
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
|
@@ -34,6 +39,30 @@ BACKWARD = "BACKWARD_INPUT"
|
|
34 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def one_hot_e(dna_seq: str) -> np.ndarray:
|
38 |
mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
39 |
'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
@@ -136,19 +165,25 @@ def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
|
|
136 |
return output
|
137 |
|
138 |
|
139 |
-
class MQTLDataset(
|
140 |
-
def __init__(self,
|
141 |
-
self.dataset =
|
142 |
self.check_if_pipeline_is_ok_by_inserting_debug_motif = check_if_pipeline_is_ok_by_inserting_debug_motif
|
143 |
self.debug_motif = "ATCGCCTA"
|
|
|
144 |
pass
|
145 |
|
146 |
-
def
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
|
153 |
seq = insert_debug_motif_at_random_position(seq=seq, DEBUG_MOTIF=self.debug_motif)
|
154 |
seq_rc = reverse_complement_dna_seq(seq)
|
@@ -162,16 +197,36 @@ class MQTLDataset(Dataset):
|
|
162 |
return [ohe_seq, ohe_seq_rc], label_np_array
|
163 |
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
class MqtlDataModule(LightningDataModule):
|
166 |
def __init__(self, train_ds: Dataset, val_ds: Dataset, test_ds: Dataset, batch_size=16):
|
167 |
super().__init__()
|
168 |
self.batch_size = batch_size
|
169 |
-
self.train_loader = DataLoader(train_ds, batch_size=self.batch_size, shuffle=
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
pass
|
176 |
|
177 |
def prepare_data(self):
|
@@ -376,17 +431,40 @@ def start(classifier_model, model_save_path, is_attention_model=False, m_optimiz
|
|
376 |
if is_binned:
|
377 |
file_suffix = "_binned"
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset)
|
386 |
|
387 |
classifier_model = classifier_model #.to(DEVICE)
|
388 |
try:
|
389 |
-
classifier_model = classifier_model.from_pretrained("my-awesome-model")
|
390 |
except Exception as x:
|
391 |
print(x)
|
392 |
|
@@ -406,13 +484,18 @@ def start(classifier_model, model_save_path, is_attention_model=False, m_optimiz
|
|
406 |
torch.save(classifier_module.state_dict(), model_save_path)
|
407 |
|
408 |
# save locally
|
409 |
-
|
|
|
410 |
|
411 |
# push to the hub
|
412 |
-
classifier_model.push_to_hub(
|
|
|
|
|
|
|
|
|
413 |
|
414 |
# reload
|
415 |
-
model = classifier_model.from_pretrained("my-awesome-model")
|
416 |
# repo_url = "https://huggingface.co/fahimfarhan/mqtl-classifier-model"
|
417 |
#
|
418 |
# push_to_hub(
|
@@ -429,18 +512,23 @@ def start(classifier_model, model_save_path, is_attention_model=False, m_optimiz
|
|
429 |
|
430 |
|
431 |
if __name__ == '__main__':
|
|
|
|
|
432 |
WINDOW = 200
|
433 |
simple_cnn = Cnn1dClassifier(seq_len=WINDOW)
|
434 |
simple_cnn.enable_logging = True
|
435 |
|
436 |
start(classifier_model=simple_cnn, model_save_path=simple_cnn.file_name, WINDOW=WINDOW,
|
437 |
-
dataset_folder_prefix="inputdata/", is_debug=True, max_epochs=
|
438 |
|
439 |
pass
|
440 |
|
441 |
-
|
442 |
"""
|
443 |
lightning_logs/
|
444 |
*.pth
|
445 |
my-awesome-model
|
446 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
+
import os
|
3 |
import random
|
4 |
from typing import Any
|
5 |
|
|
|
7 |
import pandas as pd
|
8 |
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
9 |
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
|
10 |
+
from torch.nn.utils.rnn import pad_sequence
|
11 |
from torch.utils.data import DataLoader, Dataset
|
12 |
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
13 |
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
14 |
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
15 |
import torch
|
16 |
from torch import nn
|
17 |
+
from datasets import load_dataset, IterableDataset
|
18 |
from huggingface_hub import PyTorchModelHubMixin
|
19 |
|
20 |
+
from dotenv import load_dotenv
|
21 |
+
from huggingface_hub import login
|
22 |
+
|
23 |
timber = logging.getLogger()
|
24 |
# logging.basicConfig(level=logging.DEBUG)
|
25 |
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
|
|
|
39 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
|
41 |
|
42 |
+
def login_inside_huggingface_virtualmachine():
|
43 |
+
# Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
|
44 |
+
try:
|
45 |
+
load_dotenv() # Only useful on your laptop if .env exists
|
46 |
+
print(".env file loaded successfully.")
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Warning: Could not load .env file. Exception: {e}")
|
49 |
+
|
50 |
+
# Try to get the token from environment variables
|
51 |
+
try:
|
52 |
+
token = os.getenv("HF_TOKEN")
|
53 |
+
|
54 |
+
if not token:
|
55 |
+
raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")
|
56 |
+
|
57 |
+
# Log in to Hugging Face Hub
|
58 |
+
login(token)
|
59 |
+
print("Logged in to Hugging Face Hub successfully.")
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error during Hugging Face login: {e}")
|
63 |
+
# Handle the error appropriately (e.g., exit or retry)
|
64 |
+
|
65 |
+
|
66 |
def one_hot_e(dna_seq: str) -> np.ndarray:
|
67 |
mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
68 |
'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
|
|
165 |
return output
|
166 |
|
167 |
|
168 |
+
class MQTLDataset(IterableDataset):
|
169 |
+
def __init__(self, m_dataset, seq_len, check_if_pipeline_is_ok_by_inserting_debug_motif=False):
|
170 |
+
self.dataset = m_dataset
|
171 |
self.check_if_pipeline_is_ok_by_inserting_debug_motif = check_if_pipeline_is_ok_by_inserting_debug_motif
|
172 |
self.debug_motif = "ATCGCCTA"
|
173 |
+
self.seq_len = seq_len
|
174 |
pass
|
175 |
|
176 |
+
def __iter__(self):
|
177 |
+
for row in self.dataset:
|
178 |
+
processed = self.preprocess(row)
|
179 |
+
if processed is not None:
|
180 |
+
yield processed
|
181 |
+
|
182 |
+
def preprocess(self, row):
|
183 |
+
seq = row['sequence'] # Fetch the 'sequence' column
|
184 |
+
if len(seq) != self.seq_len:
|
185 |
+
return None # skip problematic row!
|
186 |
+
label = row['label'] # Fetch the 'label' column (or whatever target you use)
|
187 |
if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
|
188 |
seq = insert_debug_motif_at_random_position(seq=seq, DEBUG_MOTIF=self.debug_motif)
|
189 |
seq_rc = reverse_complement_dna_seq(seq)
|
|
|
197 |
return [ohe_seq, ohe_seq_rc], label_np_array
|
198 |
|
199 |
|
200 |
+
# def collate_fn(batch):
|
201 |
+
# sequences, labels = zip(*batch)
|
202 |
+
# ohe_seq, ohe_seq_rc = sequences[0], sequences[1]
|
203 |
+
# # Pad sequences to the maximum length in this batch
|
204 |
+
# padded_sequences = pad_sequence(ohe_seq, batch_first=True, padding_value=0)
|
205 |
+
# padded_sequences_rc = pad_sequence(ohe_seq_rc, batch_first=True, padding_value=0)
|
206 |
+
# # Convert labels to a tensor
|
207 |
+
# labels = torch.stack(labels)
|
208 |
+
# return [padded_sequences, padded_sequences_rc], labels
|
209 |
+
|
210 |
+
|
211 |
class MqtlDataModule(LightningDataModule):
|
212 |
def __init__(self, train_ds: Dataset, val_ds: Dataset, test_ds: Dataset, batch_size=16):
|
213 |
super().__init__()
|
214 |
self.batch_size = batch_size
|
215 |
+
self.train_loader = DataLoader(train_ds, batch_size=self.batch_size, shuffle=False,
|
216 |
+
# collate_fn=collate_fn,
|
217 |
+
num_workers=15,
|
218 |
+
# persistent_workers=True
|
219 |
+
)
|
220 |
+
self.validate_loader = DataLoader(val_ds, batch_size=self.batch_size, shuffle=False,
|
221 |
+
# collate_fn=collate_fn,
|
222 |
+
num_workers=15,
|
223 |
+
# persistent_workers=True
|
224 |
+
)
|
225 |
+
self.test_loader = DataLoader(test_ds, batch_size=self.batch_size, shuffle=False,
|
226 |
+
# collate_fn=collate_fn,
|
227 |
+
num_workers=15,
|
228 |
+
# persistent_workers=True
|
229 |
+
)
|
230 |
pass
|
231 |
|
232 |
def prepare_data(self):
|
|
|
431 |
if is_binned:
|
432 |
file_suffix = "_binned"
|
433 |
|
434 |
+
data_files = {
|
435 |
+
# small samples
|
436 |
+
"train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
|
437 |
+
"validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
|
438 |
+
"test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
|
439 |
+
# large samples
|
440 |
+
"train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
|
441 |
+
"validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
|
442 |
+
"test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",
|
443 |
+
}
|
444 |
+
|
445 |
+
dataset_map = None
|
446 |
+
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv")
|
447 |
+
if is_my_laptop:
|
448 |
+
dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
|
449 |
+
else:
|
450 |
+
dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)
|
451 |
+
|
452 |
+
train_dataset = MQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
|
453 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
454 |
+
seq_len=WINDOW
|
455 |
+
)
|
456 |
+
val_dataset = MQTLDataset(dataset_map[f"validate_binned_{WINDOW}"],
|
457 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
458 |
+
seq_len=WINDOW)
|
459 |
+
test_dataset = MQTLDataset(dataset_map[f"test_binned_{WINDOW}"],
|
460 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
461 |
+
seq_len=WINDOW)
|
462 |
|
463 |
data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset)
|
464 |
|
465 |
classifier_model = classifier_model #.to(DEVICE)
|
466 |
try:
|
467 |
+
classifier_model = classifier_model.from_pretrained(f"my-awesome-model-{WINDOW}")
|
468 |
except Exception as x:
|
469 |
print(x)
|
470 |
|
|
|
484 |
torch.save(classifier_module.state_dict(), model_save_path)
|
485 |
|
486 |
# save locally
|
487 |
+
model_subdirectory = f"my-awesome-model-{WINDOW}"
|
488 |
+
classifier_model.save_pretrained(model_subdirectory)
|
489 |
|
490 |
# push to the hub
|
491 |
+
classifier_model.push_to_hub(
|
492 |
+
repo_id="fahimfarhan/mqtl-classifier-model",
|
493 |
+
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
|
494 |
+
commit_message=f":tada: Push model for window size {WINDOW}"
|
495 |
+
)
|
496 |
|
497 |
# reload
|
498 |
+
model = classifier_model.from_pretrained(f"my-awesome-model-{WINDOW}")
|
499 |
# repo_url = "https://huggingface.co/fahimfarhan/mqtl-classifier-model"
|
500 |
#
|
501 |
# push_to_hub(
|
|
|
512 |
|
513 |
|
514 |
if __name__ == '__main__':
|
515 |
+
login_inside_huggingface_virtualmachine()
|
516 |
+
|
517 |
WINDOW = 200
|
518 |
simple_cnn = Cnn1dClassifier(seq_len=WINDOW)
|
519 |
simple_cnn.enable_logging = True
|
520 |
|
521 |
start(classifier_model=simple_cnn, model_save_path=simple_cnn.file_name, WINDOW=WINDOW,
|
522 |
+
dataset_folder_prefix="inputdata/", is_debug=True, max_epochs=10)
|
523 |
|
524 |
pass
|
525 |
|
|
|
526 |
"""
|
527 |
lightning_logs/
|
528 |
*.pth
|
529 |
my-awesome-model
|
530 |
+
|
531 |
+
INFO:root:validate_acc = 0.5625, validate_auc = 0.5490195751190186, validate_f1_score = 0.30000001192092896, validate_precision = 0.6000000238418579, validate_recall = 0.20000000298023224
|
532 |
+
/home/soumic/Codes/mqtl-classification/venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=15` in the `DataLoader` to improve performance.
|
533 |
+
|
534 |
+
"""
|
requirements.txt
CHANGED
@@ -29,4 +29,5 @@ torchviz
|
|
29 |
gReLU # luckily now available in pip!
|
30 |
# gReLU @ git+https://github.com/Genentech/gReLU # @623fee8023aabcef89f0afeedbeafff4b71453af
|
31 |
# lightning[extra] # cz I got a stupid warning in the console logs
|
32 |
-
torchmetrics
|
|
|
|
29 |
gReLU # luckily now available in pip!
|
30 |
# gReLU @ git+https://github.com/Genentech/gReLU # @623fee8023aabcef89f0afeedbeafff4b71453af
|
31 |
# lightning[extra] # cz I got a stupid warning in the console logs
|
32 |
+
torchmetrics
|
33 |
+
python-dotenv
|