JianyuanWang commited on
Commit
8866a87
·
1 Parent(s): 5e437cf

upload vggsfm

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. vggsfm/.gitignore +143 -0
  2. vggsfm/CHANGELOG.txt +19 -0
  3. vggsfm/CODE_OF_CONDUCT.md +80 -0
  4. vggsfm/CONTRIBUTING.md +31 -0
  5. vggsfm/LICENSE.txt +399 -0
  6. vggsfm/README.md +117 -0
  7. vggsfm/assets/ui.png +0 -0
  8. vggsfm/cfgs/demo.yaml +80 -0
  9. vggsfm/demo.py +489 -0
  10. vggsfm/examples/apple/images/frame000007.jpg +0 -0
  11. vggsfm/examples/apple/images/frame000012.jpg +0 -0
  12. vggsfm/examples/apple/images/frame000017.jpg +0 -0
  13. vggsfm/examples/apple/images/frame000019.jpg +0 -0
  14. vggsfm/examples/apple/images/frame000024.jpg +0 -0
  15. vggsfm/examples/apple/images/frame000025.jpg +0 -0
  16. vggsfm/examples/apple/images/frame000043.jpg +0 -0
  17. vggsfm/examples/apple/images/frame000052.jpg +0 -0
  18. vggsfm/examples/apple/images/frame000070.jpg +0 -0
  19. vggsfm/examples/apple/images/frame000077.jpg +0 -0
  20. vggsfm/examples/apple/images/frame000085.jpg +0 -0
  21. vggsfm/examples/apple/images/frame000096.jpg +0 -0
  22. vggsfm/examples/apple/images/frame000128.jpg +0 -0
  23. vggsfm/examples/apple/images/frame000145.jpg +0 -0
  24. vggsfm/examples/apple/images/frame000160.jpg +0 -0
  25. vggsfm/examples/apple/images/frame000162.jpg +0 -0
  26. vggsfm/examples/apple/images/frame000168.jpg +0 -0
  27. vggsfm/examples/apple/images/frame000172.jpg +0 -0
  28. vggsfm/examples/apple/images/frame000191.jpg +0 -0
  29. vggsfm/examples/apple/images/frame000200.jpg +0 -0
  30. vggsfm/examples/british_museum/images/29057984_287139632.jpg +0 -0
  31. vggsfm/examples/british_museum/images/32630292_7166579210.jpg +0 -0
  32. vggsfm/examples/british_museum/images/45839934_4117745134.jpg +0 -0
  33. vggsfm/examples/british_museum/images/51004432_567773767.jpg +0 -0
  34. vggsfm/examples/british_museum/images/62620282_3728576515.jpg +0 -0
  35. vggsfm/examples/british_museum/images/71931631_7212707886.jpg +0 -0
  36. vggsfm/examples/british_museum/images/78600497_407639599.jpg +0 -0
  37. vggsfm/examples/british_museum/images/80340357_5029510336.jpg +0 -0
  38. vggsfm/examples/british_museum/images/81272348_2712949069.jpg +0 -0
  39. vggsfm/examples/british_museum/images/93266801_2335569192.jpg +0 -0
  40. vggsfm/examples/cake/images/frame000020.jpg +0 -0
  41. vggsfm/examples/cake/images/frame000069.jpg +0 -0
  42. vggsfm/examples/cake/images/frame000096.jpg +0 -0
  43. vggsfm/examples/cake/images/frame000112.jpg +0 -0
  44. vggsfm/examples/cake/images/frame000146.jpg +0 -0
  45. vggsfm/examples/cake/images/frame000149.jpg +0 -0
  46. vggsfm/examples/cake/images/frame000166.jpg +0 -0
  47. vggsfm/examples/cake/images/frame000169.jpg +0 -0
  48. vggsfm/install.sh +47 -0
  49. vggsfm/minipytorch3d/__init__.py +0 -0
  50. vggsfm/minipytorch3d/cameras.py +1722 -0
vggsfm/.gitignore ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .hydra/
2
+ output/
3
+
4
+ # Byte-compiled / optimized / DLL files
5
+ __pycache__/
6
+ *.py[cod]
7
+ *$py.class
8
+
9
+ # C extensions
10
+ *.so
11
+
12
+ # Distribution / packaging
13
+ .Python
14
+ build/
15
+ develop-eggs/
16
+ dist/
17
+ downloads/
18
+ eggs/
19
+ .eggs/
20
+ lib/
21
+ lib64/
22
+ parts/
23
+ sdist/
24
+ var/
25
+ wheels/
26
+ pip-wheel-metadata/
27
+ share/python-wheels/
28
+ *.egg-info/
29
+ .installed.cfg
30
+ *.egg
31
+ MANIFEST
32
+
33
+ # PyInstaller
34
+ # Usually these files are written by a python script from a template
35
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
36
+ *.manifest
37
+ *.spec
38
+
39
+ # Installer logs
40
+ pip-log.txt
41
+ pip-delete-this-directory.txt
42
+
43
+ # Unit test / coverage reports
44
+ htmlcov/
45
+ .tox/
46
+ .nox/
47
+ .coverage
48
+ .coverage.*
49
+ .cache
50
+ nosetests.xml
51
+ coverage.xml
52
+ *.cover
53
+ *.py,cover
54
+ .hypothesis/
55
+ .pytest_cache/
56
+ cover/
57
+
58
+ # Translations
59
+ *.mo
60
+ *.pot
61
+
62
+ # Django stuff:
63
+ *.log
64
+ local_settings.py
65
+ db.sqlite3
66
+ db.sqlite3-journal
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ target/
80
+
81
+ # Jupyter Notebook
82
+ .ipynb_checkpoints
83
+
84
+ # IPython
85
+ profile_default/
86
+ ipython_config.py
87
+
88
+ # pyenv
89
+ .python-version
90
+
91
+ # pipenv
92
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
93
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
94
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
95
+ # install all needed dependencies.
96
+ #Pipfile.lock
97
+
98
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
99
+ __pypackages__/
100
+
101
+ # Celery stuff
102
+ celerybeat-schedule
103
+ celerybeat.pid
104
+
105
+ # SageMath parsed files
106
+ *.sage.py
107
+
108
+ # Environments
109
+ .env
110
+ .venv
111
+ env/
112
+ venv/
113
+ ENV/
114
+ env.bak/
115
+ venv.bak/
116
+
117
+ # Spyder project settings
118
+ .spyderproject
119
+ .spyproject
120
+
121
+ # Rope project settings
122
+ .ropeproject
123
+
124
+ # mkdocs documentation
125
+ /site
126
+
127
+ # mypy
128
+ .mypy_cache/
129
+ .dmypy.json
130
+ dmypy.json
131
+
132
+ # Pyre type checker
133
+ .pyre/
134
+
135
+ # pytype static type analyzer
136
+ .pytype/
137
+
138
+ # Profiling data
139
+ .prof
140
+
141
+ # Folder specific to your needs
142
+ **/tmp/
143
+ **/outputs/
vggsfm/CHANGELOG.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ VGGSfM 2.0
2
+
3
+ * More powerful camera and track predictor
4
+ * Save the GPU memory usage by around 50%
5
+ * Add Poselib as an option for Fundamental Matrix Estimation
6
+ * Support COLMAP-tyle output
7
+ * Provide focal length in pixel
8
+ * Normalize the scene after each BA
9
+ * Remove preliminary_cameras for simplicity
10
+ * Switch to lightglue instead of gluefactory
11
+ * Upgrade pycolmap from 0.5.0 to 0.6.1
12
+
13
+
14
+
15
+ TODO:
16
+ 1. Make precision consistent
17
+ 2. Provide a step-by-step instruction for using VGGSfM for 3D Gaussian
18
+ 3. Support shared cameras
19
+
vggsfm/CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to make participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, sex characteristics, gender identity and expression,
9
+ level of experience, education, socio-economic status, nationality, personal
10
+ appearance, race, religion, or sexual identity and orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies within all project spaces, and it also applies when
49
+ an individual is representing the project or its community in public spaces.
50
+ Examples of representing a project or community include using an official
51
+ project e-mail address, posting via an official social media account, or acting
52
+ as an appointed representative at an online or offline event. Representation of
53
+ a project may be further defined and clarified by project maintainers.
54
+
55
+ This Code of Conduct also applies outside the project spaces when there is a
56
+ reasonable belief that an individual's behavior may have a negative impact on
57
+ the project or its community.
58
+
59
+ ## Enforcement
60
+
61
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
62
+ reported by contacting the project team at <[email protected]>. All
63
+ complaints will be reviewed and investigated and will result in a response that
64
+ is deemed necessary and appropriate to the circumstances. The project team is
65
+ obligated to maintain confidentiality with regard to the reporter of an incident.
66
+ Further details of specific enforcement policies may be posted separately.
67
+
68
+ Project maintainers who do not follow or enforce the Code of Conduct in good
69
+ faith may face temporary or permanent repercussions as determined by other
70
+ members of the project's leadership.
71
+
72
+ ## Attribution
73
+
74
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
75
+ available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
76
+
77
+ [homepage]: https://www.contributor-covenant.org
78
+
79
+ For answers to common questions about this code of conduct, see
80
+ https://www.contributor-covenant.org/faq
vggsfm/CONTRIBUTING.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributing to PoseDiffusion
2
+ We want to make contributing to this project as easy and transparent as
3
+ possible.
4
+
5
+ ## Pull Requests
6
+ We actively welcome your pull requests.
7
+
8
+ 1. Fork the repo and create your branch from `main`.
9
+ 2. If you've added code that should be tested, add tests.
10
+ 3. If you've changed APIs, update the documentation.
11
+ 4. Ensure the test suite passes.
12
+ 5. Make sure your code lints.
13
+ 6. If you haven't already, complete the Contributor License Agreement ("CLA").
14
+
15
+ ## Contributor License Agreement ("CLA")
16
+ In order to accept your pull request, we need you to submit a CLA. You only need
17
+ to do this once to work on any of Facebook's open source projects.
18
+
19
+ Complete your CLA here: <https://code.facebook.com/cla>
20
+
21
+ ## Issues
22
+ We use GitHub issues to track public bugs. Please ensure your description is
23
+ clear and has sufficient instructions to be able to reproduce the issue.
24
+
25
+ Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
26
+ disclosure of security bugs. In those cases, please go through the process
27
+ outlined on that page and do not file a public issue.
28
+
29
+ ## License
30
+ By contributing to PoseDiffusion, you agree that your contributions will be licensed
31
+ under the LICENSE file in the root directory of this source tree.
vggsfm/LICENSE.txt ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution-NonCommercial 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More_considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution-NonCommercial 4.0 International Public
58
+ License
59
+
60
+ By exercising the Licensed Rights (defined below), You accept and agree
61
+ to be bound by the terms and conditions of this Creative Commons
62
+ Attribution-NonCommercial 4.0 International Public License ("Public
63
+ License"). To the extent this Public License may be interpreted as a
64
+ contract, You are granted the Licensed Rights in consideration of Your
65
+ acceptance of these terms and conditions, and the Licensor grants You
66
+ such rights in consideration of benefits the Licensor receives from
67
+ making the Licensed Material available under these terms and
68
+ conditions.
69
+
70
+ Section 1 -- Definitions.
71
+
72
+ a. Adapted Material means material subject to Copyright and Similar
73
+ Rights that is derived from or based upon the Licensed Material
74
+ and in which the Licensed Material is translated, altered,
75
+ arranged, transformed, or otherwise modified in a manner requiring
76
+ permission under the Copyright and Similar Rights held by the
77
+ Licensor. For purposes of this Public License, where the Licensed
78
+ Material is a musical work, performance, or sound recording,
79
+ Adapted Material is always produced where the Licensed Material is
80
+ synched in timed relation with a moving image.
81
+
82
+ b. Adapter's License means the license You apply to Your Copyright
83
+ and Similar Rights in Your contributions to Adapted Material in
84
+ accordance with the terms and conditions of this Public License.
85
+
86
+ c. Copyright and Similar Rights means copyright and/or similar rights
87
+ closely related to copyright including, without limitation,
88
+ performance, broadcast, sound recording, and Sui Generis Database
89
+ Rights, without regard to how the rights are labeled or
90
+ categorized. For purposes of this Public License, the rights
91
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
92
+ Rights.
93
+ d. Effective Technological Measures means those measures that, in the
94
+ absence of proper authority, may not be circumvented under laws
95
+ fulfilling obligations under Article 11 of the WIPO Copyright
96
+ Treaty adopted on December 20, 1996, and/or similar international
97
+ agreements.
98
+
99
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
100
+ any other exception or limitation to Copyright and Similar Rights
101
+ that applies to Your use of the Licensed Material.
102
+
103
+ f. Licensed Material means the artistic or literary work, database,
104
+ or other material to which the Licensor applied this Public
105
+ License.
106
+
107
+ g. Licensed Rights means the rights granted to You subject to the
108
+ terms and conditions of this Public License, which are limited to
109
+ all Copyright and Similar Rights that apply to Your use of the
110
+ Licensed Material and that the Licensor has authority to license.
111
+
112
+ h. Licensor means the individual(s) or entity(ies) granting rights
113
+ under this Public License.
114
+
115
+ i. NonCommercial means not primarily intended for or directed towards
116
+ commercial advantage or monetary compensation. For purposes of
117
+ this Public License, the exchange of the Licensed Material for
118
+ other material subject to Copyright and Similar Rights by digital
119
+ file-sharing or similar means is NonCommercial provided there is
120
+ no payment of monetary compensation in connection with the
121
+ exchange.
122
+
123
+ j. Share means to provide material to the public by any means or
124
+ process that requires permission under the Licensed Rights, such
125
+ as reproduction, public display, public performance, distribution,
126
+ dissemination, communication, or importation, and to make material
127
+ available to the public including in ways that members of the
128
+ public may access the material from a place and at a time
129
+ individually chosen by them.
130
+
131
+ k. Sui Generis Database Rights means rights other than copyright
132
+ resulting from Directive 96/9/EC of the European Parliament and of
133
+ the Council of 11 March 1996 on the legal protection of databases,
134
+ as amended and/or succeeded, as well as other essentially
135
+ equivalent rights anywhere in the world.
136
+
137
+ l. You means the individual or entity exercising the Licensed Rights
138
+ under this Public License. Your has a corresponding meaning.
139
+
140
+ Section 2 -- Scope.
141
+
142
+ a. License grant.
143
+
144
+ 1. Subject to the terms and conditions of this Public License,
145
+ the Licensor hereby grants You a worldwide, royalty-free,
146
+ non-sublicensable, non-exclusive, irrevocable license to
147
+ exercise the Licensed Rights in the Licensed Material to:
148
+
149
+ a. reproduce and Share the Licensed Material, in whole or
150
+ in part, for NonCommercial purposes only; and
151
+
152
+ b. produce, reproduce, and Share Adapted Material for
153
+ NonCommercial purposes only.
154
+
155
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
156
+ Exceptions and Limitations apply to Your use, this Public
157
+ License does not apply, and You do not need to comply with
158
+ its terms and conditions.
159
+
160
+ 3. Term. The term of this Public License is specified in Section
161
+ 6(a).
162
+
163
+ 4. Media and formats; technical modifications allowed. The
164
+ Licensor authorizes You to exercise the Licensed Rights in
165
+ all media and formats whether now known or hereafter created,
166
+ and to make technical modifications necessary to do so. The
167
+ Licensor waives and/or agrees not to assert any right or
168
+ authority to forbid You from making technical modifications
169
+ necessary to exercise the Licensed Rights, including
170
+ technical modifications necessary to circumvent Effective
171
+ Technological Measures. For purposes of this Public License,
172
+ simply making modifications authorized by this Section 2(a)
173
+ (4) never produces Adapted Material.
174
+
175
+ 5. Downstream recipients.
176
+
177
+ a. Offer from the Licensor -- Licensed Material. Every
178
+ recipient of the Licensed Material automatically
179
+ receives an offer from the Licensor to exercise the
180
+ Licensed Rights under the terms and conditions of this
181
+ Public License.
182
+
183
+ b. No downstream restrictions. You may not offer or impose
184
+ any additional or different terms or conditions on, or
185
+ apply any Effective Technological Measures to, the
186
+ Licensed Material if doing so restricts exercise of the
187
+ Licensed Rights by any recipient of the Licensed
188
+ Material.
189
+
190
+ 6. No endorsement. Nothing in this Public License constitutes or
191
+ may be construed as permission to assert or imply that You
192
+ are, or that Your use of the Licensed Material is, connected
193
+ with, or sponsored, endorsed, or granted official status by,
194
+ the Licensor or others designated to receive attribution as
195
+ provided in Section 3(a)(1)(A)(i).
196
+
197
+ b. Other rights.
198
+
199
+ 1. Moral rights, such as the right of integrity, are not
200
+ licensed under this Public License, nor are publicity,
201
+ privacy, and/or other similar personality rights; however, to
202
+ the extent possible, the Licensor waives and/or agrees not to
203
+ assert any such rights held by the Licensor to the limited
204
+ extent necessary to allow You to exercise the Licensed
205
+ Rights, but not otherwise.
206
+
207
+ 2. Patent and trademark rights are not licensed under this
208
+ Public License.
209
+
210
+ 3. To the extent possible, the Licensor waives any right to
211
+ collect royalties from You for the exercise of the Licensed
212
+ Rights, whether directly or through a collecting society
213
+ under any voluntary or waivable statutory or compulsory
214
+ licensing scheme. In all other cases the Licensor expressly
215
+ reserves any right to collect such royalties, including when
216
+ the Licensed Material is used other than for NonCommercial
217
+ purposes.
218
+
219
+ Section 3 -- License Conditions.
220
+
221
+ Your exercise of the Licensed Rights is expressly made subject to the
222
+ following conditions.
223
+
224
+ a. Attribution.
225
+
226
+ 1. If You Share the Licensed Material (including in modified
227
+ form), You must:
228
+
229
+ a. retain the following if it is supplied by the Licensor
230
+ with the Licensed Material:
231
+
232
+ i. identification of the creator(s) of the Licensed
233
+ Material and any others designated to receive
234
+ attribution, in any reasonable manner requested by
235
+ the Licensor (including by pseudonym if
236
+ designated);
237
+
238
+ ii. a copyright notice;
239
+
240
+ iii. a notice that refers to this Public License;
241
+
242
+ iv. a notice that refers to the disclaimer of
243
+ warranties;
244
+
245
+ v. a URI or hyperlink to the Licensed Material to the
246
+ extent reasonably practicable;
247
+
248
+ b. indicate if You modified the Licensed Material and
249
+ retain an indication of any previous modifications; and
250
+
251
+ c. indicate the Licensed Material is licensed under this
252
+ Public License, and include the text of, or the URI or
253
+ hyperlink to, this Public License.
254
+
255
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
256
+ reasonable manner based on the medium, means, and context in
257
+ which You Share the Licensed Material. For example, it may be
258
+ reasonable to satisfy the conditions by providing a URI or
259
+ hyperlink to a resource that includes the required
260
+ information.
261
+
262
+ 3. If requested by the Licensor, You must remove any of the
263
+ information required by Section 3(a)(1)(A) to the extent
264
+ reasonably practicable.
265
+
266
+ 4. If You Share Adapted Material You produce, the Adapter's
267
+ License You apply must not prevent recipients of the Adapted
268
+ Material from complying with this Public License.
269
+
270
+ Section 4 -- Sui Generis Database Rights.
271
+
272
+ Where the Licensed Rights include Sui Generis Database Rights that
273
+ apply to Your use of the Licensed Material:
274
+
275
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
276
+ to extract, reuse, reproduce, and Share all or a substantial
277
+ portion of the contents of the database for NonCommercial purposes
278
+ only;
279
+
280
+ b. if You include all or a substantial portion of the database
281
+ contents in a database in which You have Sui Generis Database
282
+ Rights, then the database in which You have Sui Generis Database
283
+ Rights (but not its individual contents) is Adapted Material; and
284
+
285
+ c. You must comply with the conditions in Section 3(a) if You Share
286
+ all or a substantial portion of the contents of the database.
287
+
288
+ For the avoidance of doubt, this Section 4 supplements and does not
289
+ replace Your obligations under this Public License where the Licensed
290
+ Rights include other Copyright and Similar Rights.
291
+
292
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
293
+
294
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
295
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
296
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
297
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
298
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
299
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
300
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
301
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
302
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
303
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
304
+
305
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
306
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
307
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
308
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
309
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
310
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
311
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
312
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
313
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
314
+
315
+ c. The disclaimer of warranties and limitation of liability provided
316
+ above shall be interpreted in a manner that, to the extent
317
+ possible, most closely approximates an absolute disclaimer and
318
+ waiver of all liability.
319
+
320
+ Section 6 -- Term and Termination.
321
+
322
+ a. This Public License applies for the term of the Copyright and
323
+ Similar Rights licensed here. However, if You fail to comply with
324
+ this Public License, then Your rights under this Public License
325
+ terminate automatically.
326
+
327
+ b. Where Your right to use the Licensed Material has terminated under
328
+ Section 6(a), it reinstates:
329
+
330
+ 1. automatically as of the date the violation is cured, provided
331
+ it is cured within 30 days of Your discovery of the
332
+ violation; or
333
+
334
+ 2. upon express reinstatement by the Licensor.
335
+
336
+ For the avoidance of doubt, this Section 6(b) does not affect any
337
+ right the Licensor may have to seek remedies for Your violations
338
+ of this Public License.
339
+
340
+ c. For the avoidance of doubt, the Licensor may also offer the
341
+ Licensed Material under separate terms or conditions or stop
342
+ distributing the Licensed Material at any time; however, doing so
343
+ will not terminate this Public License.
344
+
345
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
346
+ License.
347
+
348
+ Section 7 -- Other Terms and Conditions.
349
+
350
+ a. The Licensor shall not be bound by any additional or different
351
+ terms or conditions communicated by You unless expressly agreed.
352
+
353
+ b. Any arrangements, understandings, or agreements regarding the
354
+ Licensed Material not stated herein are separate from and
355
+ independent of the terms and conditions of this Public License.
356
+
357
+ Section 8 -- Interpretation.
358
+
359
+ a. For the avoidance of doubt, this Public License does not, and
360
+ shall not be interpreted to, reduce, limit, restrict, or impose
361
+ conditions on any use of the Licensed Material that could lawfully
362
+ be made without permission under this Public License.
363
+
364
+ b. To the extent possible, if any provision of this Public License is
365
+ deemed unenforceable, it shall be automatically reformed to the
366
+ minimum extent necessary to make it enforceable. If the provision
367
+ cannot be reformed, it shall be severed from this Public License
368
+ without affecting the enforceability of the remaining terms and
369
+ conditions.
370
+
371
+ c. No term or condition of this Public License will be waived and no
372
+ failure to comply consented to unless expressly agreed to by the
373
+ Licensor.
374
+
375
+ d. Nothing in this Public License constitutes or may be interpreted
376
+ as a limitation upon, or waiver of, any privileges and immunities
377
+ that apply to the Licensor or You, including from the legal
378
+ processes of any jurisdiction or authority.
379
+
380
+ =======================================================================
381
+
382
+ Creative Commons is not a party to its public
383
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
384
+ its public licenses to material it publishes and in those instances
385
+ will be considered the “Licensor.” The text of the Creative Commons
386
+ public licenses is dedicated to the public domain under the CC0 Public
387
+ Domain Dedication. Except for the limited purpose of indicating that
388
+ material is shared under a Creative Commons public license or as
389
+ otherwise permitted by the Creative Commons policies published at
390
+ creativecommons.org/policies, Creative Commons does not authorize the
391
+ use of the trademark "Creative Commons" or any other trademark or logo
392
+ of Creative Commons without its prior written consent including,
393
+ without limitation, in connection with any unauthorized modifications
394
+ to any of its public licenses or any other arrangements,
395
+ understandings, or agreements concerning use of licensed material. For
396
+ the avoidance of doubt, this paragraph does not form part of the
397
+ public licenses.
398
+
399
+ Creative Commons may be contacted at creativecommons.org.
vggsfm/README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # VGGSfM: Visual Geometry Grounded Deep Structure From Motion
2
+
3
+
4
+ ![Teaser](https://raw.githubusercontent.com/vggsfm/vggsfm.github.io/main/resources/vggsfm_teaser.gif)
5
+
6
+ **[Meta AI Research, GenAI](https://ai.facebook.com/research/)**; **[University of Oxford, VGG](https://www.robots.ox.ac.uk/~vgg/)**
7
+
8
+
9
+ [Jianyuan Wang](https://jytime.github.io/), [Nikita Karaev](https://nikitakaraevv.github.io/), [Christian Rupprecht](https://chrirupp.github.io/), [David Novotny](https://d-novotny.github.io/)
10
+
11
+
12
+
13
+ <p
14
+ dir="auto">[<a href="https://arxiv.org/pdf/2312.04563.pdf" rel="nofollow">Paper</a>]
15
+ [<a href="https://vggsfm.github.io/" rel="nofollow">Project Page</a>]
16
+ [Version 2.0]
17
+ </p>
18
+
19
+
20
+ **Updates:**
21
+ - [Jun 25, 2024] Upgrade to VGGSfM 2.0! More memory efficient, more robust, more powerful, and easier to start!
22
+
23
+
24
+ - [Apr 23, 2024] Release the code and model weight for VGGSfM v1.1.
25
+
26
+
27
+
28
+
29
+ ## Installation
30
+ We provide a simple installation script that, by default, sets up a conda environment with Python 3.10, PyTorch 2.1, and CUDA 12.1.
31
+
32
+ ```.bash
33
+ source install.sh
34
+ ```
35
+
36
+ This script installs official pytorch3d, accelerate, lightglue, pycolmap, and visdom. Besides, it will also (optionally) install [poselib](https://github.com/PoseLib/PoseLib) using the python wheel under the folder ```wheels```, which is compiled by us instead of the official poselib team.
37
+
38
+ ## Demo
39
+
40
+ ### 1. Download Model
41
+ To get started, you need to first download the checkpoint. We provide the checkpoint for v2.0 model by [Hugging Face](https://huggingface.co/facebook/VGGSfM/blob/main/vggsfm_v2_0_0.bin) and [Google Drive](https://drive.google.com/file/d/163bHiqeTJhQ2_UnihRNPRA4Y9X8-gZ1-/view?usp=sharing).
42
+
43
+ ### 2. Run the Demo
44
+
45
+ Now time to enjoy your 3D reconstruction! You can start by our provided examples, such as:
46
+
47
+ ```bash
48
+ python demo.py SCENE_DIR=examples/cake resume_ckpt=/PATH/YOUR/CKPT
49
+
50
+ python demo.py SCENE_DIR=examples/british_museum query_frame_num=2 resume_ckpt=/PATH/YOUR/CKPT
51
+
52
+ python demo.py SCENE_DIR=examples/apple query_frame_num=5 max_query_pts=1600 resume_ckpt=/PATH/YOUR/CKPT
53
+ ```
54
+
55
+ All default settings for the flags are specified in `cfgs/demo.yaml`. For example, we have modified the values of `query_frame_num` and `max_query_pts` from the default settings of `3` and `4096` to `5` and `1600`, respectively, to ensure a 32 GB GPU can work for ```examples/apple```.
56
+
57
+
58
+ The reconstruction result (camera parameters and 3D points) will be automatically saved in the COLMAP format at ```output/seq_name```. You can use the [COLMAP GUI](https://colmap.github.io/gui.html) to view them.
59
+
60
+ If you want to visualize it more easily, we provide an approach supported by [visdom](https://github.com/fossasia/visdom). To begin using Visdom, start the server by entering ```visdom``` in the command line. Once the server is running, access Visdom by navigating to ```http://localhost:8097``` in your web browser. Now every reconstruction will be visualized and saved to the visdom server by enabling ```visualize=True```:
61
+
62
+ ```bash
63
+ python demo.py visualize=True ...(other flags)
64
+ ```
65
+
66
+ By doing so, you should see an interface such as:
67
+
68
+ ![UI](assets/ui.png)
69
+
70
+
71
+
72
+ ### 3. Try your own data
73
+
74
+ You only need to specify the address of your data, such as:
75
+
76
+ ```bash
77
+ python demo.py SCENE_DIR=examples/YOUR_FOLDER ...(other flags)
78
+ ```
79
+
80
+ Please ensure that the images are stored in ```YOUR_FOLDER/images```. This folder should contain only the images. Check the ```examples``` folder for the desired data structure.
81
+
82
+
83
+ Have fun and feel free to create an issue if you meet any problem. SfM is always about corner/hard cases. I am happy to help. If you prefer not to share your images publicly, please send them to me by email.
84
+
85
+ ### FAQ
86
+
87
+ * What should I do if I encounter an out-of-memory error?
88
+
89
+ To resolve an out-of-memory error, you can start by reducing the number of ```max_query_pts``` from the default ```4096``` to a lower value. If necessary, consider decreasing the ```query_frame_num```. Be aware that these adjustments may result in a sparser point cloud and could potentially impact the accuracy of the reconstruction.
90
+
91
+
92
+
93
+ ## Testing
94
+
95
+ We are still preparing the testing script for VGGSfM v2. However, you can use our code for VGGSfM v1.1 to reproduce our benchmark results in the paper. Please refer to the branch ```v1.1```.
96
+
97
+
98
+ ## Acknowledgement
99
+
100
+ We are highly inspired by [colmap](https://github.com/colmap/colmap), [pycolmap](https://github.com/colmap/pycolmap), [posediffusion](https://github.com/facebookresearch/PoseDiffusion), [cotracker](https://github.com/facebookresearch/co-tracker), and [kornia](https://github.com/kornia/kornia).
101
+
102
+
103
+ ## License
104
+ See the [LICENSE](./LICENSE) file for details about the license under which this code is made available.
105
+
106
+
107
+ ## Citing VGGSfM
108
+
109
+ If you find our repository useful, please consider giving it a star ⭐ and citing our paper in your work:
110
+
111
+ ```bibtex
112
+ @article{wang2023vggsfm,
113
+ title={VGGSfM: Visual Geometry Grounded Deep Structure From Motion},
114
+ author={Wang, Jianyuan and Karaev, Nikita and Rupprecht, Christian and Novotny, David},
115
+ journal={arXiv preprint arXiv:2312.04563},
116
+ year={2023}
117
+ }
vggsfm/assets/ui.png ADDED
vggsfm/cfgs/demo.yaml ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: .
4
+
5
+ seed: 0
6
+ img_size: 1024
7
+
8
+ viz_ip: 127.0.0.1
9
+
10
+ debug: False
11
+
12
+ center_order: True
13
+ mixed_precision: fp16
14
+ extract_color: True
15
+ filter_invalid_frame: True
16
+
17
+ comple_nonvis: True
18
+ query_frame_num: 3
19
+ robust_refine: 2
20
+ BA_iters: 2
21
+
22
+
23
+ load_gt: False
24
+ visualize: False
25
+ fmat_thres: 4.0
26
+ max_reproj_error: 4.0
27
+ init_max_reproj_error: 4.0
28
+ max_query_pts: 4096
29
+
30
+
31
+
32
+ SCENE_DIR: examples/cake
33
+
34
+ resume_ckpt: ckpt/vggsfm_v2_0_0.bin
35
+
36
+
37
+ query_method: "sp+sift"
38
+
39
+ use_poselib: True
40
+
41
+ MODEL:
42
+ _target_: vggsfm.models.VGGSfM
43
+
44
+ TRACK:
45
+ _target_: vggsfm.models.TrackerPredictor
46
+
47
+ efficient_corr: False
48
+
49
+ COARSE:
50
+ stride: 4
51
+ down_ratio: 2
52
+ FEATURENET:
53
+ _target_: vggsfm.models.BasicEncoder
54
+
55
+ PREDICTOR:
56
+ _target_: vggsfm.models.BaseTrackerPredictor
57
+
58
+ FINE:
59
+ FEATURENET:
60
+ _target_: vggsfm.models.ShallowEncoder
61
+
62
+
63
+ PREDICTOR:
64
+ _target_: vggsfm.models.BaseTrackerPredictor
65
+ depth: 4
66
+ corr_levels: 3
67
+ corr_radius: 3
68
+ latent_dim: 32
69
+ hidden_size: 256
70
+ fine: True
71
+ use_spaceatt: False
72
+
73
+ CAMERA:
74
+ _target_: vggsfm.models.CameraPredictor
75
+
76
+
77
+ TRIANGULAE:
78
+ _target_: vggsfm.models.Triangulator
79
+
80
+
vggsfm/demo.py ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import os
8
+ import time
9
+ import random
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import numpy as np
14
+ from torch.cuda.amp import autocast
15
+ import hydra
16
+
17
+ from omegaconf import DictConfig, OmegaConf
18
+ from hydra.utils import instantiate
19
+
20
+ from lightglue import LightGlue, SuperPoint, SIFT, ALIKED
21
+
22
+ import pycolmap
23
+
24
+ from visdom import Visdom
25
+
26
+
27
+ from vggsfm.datasets.demo_loader import DemoLoader
28
+ from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras
29
+
30
+ try:
31
+ import poselib
32
+ from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras_poselib
33
+
34
+ print("Poselib is available")
35
+ except:
36
+ print("Poselib is not installed. Please disable use_poselib")
37
+
38
+ from vggsfm.utils.utils import (
39
+ set_seed_and_print,
40
+ farthest_point_sampling,
41
+ calculate_index_mappings,
42
+ switch_tensor_order,
43
+ )
44
+
45
+
46
+ @hydra.main(config_path="cfgs/", config_name="demo")
47
+ def demo_fn(cfg: DictConfig):
48
+ OmegaConf.set_struct(cfg, False)
49
+
50
+ # Print configuration
51
+ print("Model Config:", OmegaConf.to_yaml(cfg))
52
+
53
+ torch.backends.cudnn.enabled = False
54
+ torch.backends.cudnn.benchmark = True
55
+ torch.backends.cudnn.deterministic = True
56
+
57
+ # Set seed
58
+ seed_all_random_engines(cfg.seed)
59
+
60
+ # Model instantiation
61
+ model = instantiate(cfg.MODEL, _recursive_=False, cfg=cfg)
62
+
63
+ device = "cuda" if torch.cuda.is_available() else "cpu"
64
+
65
+ model = model.to(device)
66
+
67
+ # Prepare test dataset
68
+ test_dataset = DemoLoader(
69
+ SCENE_DIR=cfg.SCENE_DIR, img_size=cfg.img_size, normalize_cameras=False, load_gt=cfg.load_gt, cfg=cfg
70
+ )
71
+
72
+ if cfg.resume_ckpt:
73
+ # Reload model
74
+ checkpoint = torch.load(cfg.resume_ckpt)
75
+ model.load_state_dict(checkpoint, strict=True)
76
+ print(f"Successfully resumed from {cfg.resume_ckpt}")
77
+
78
+ if cfg.visualize:
79
+ from pytorch3d.structures import Pointclouds
80
+ from pytorch3d.vis.plotly_vis import plot_scene
81
+ from pytorch3d.renderer.cameras import PerspectiveCameras as PerspectiveCamerasVisual
82
+
83
+ viz = Visdom()
84
+
85
+
86
+ sequence_list = test_dataset.sequence_list
87
+
88
+ for seq_name in sequence_list:
89
+ print("*" * 50 + f" Testing on Scene {seq_name} " + "*" * 50)
90
+
91
+ # Load the data
92
+ batch, image_paths = test_dataset.get_data(sequence_name=seq_name, return_path=True)
93
+
94
+ # Send to GPU
95
+ images = batch["image"].to(device)
96
+ crop_params = batch["crop_params"].to(device)
97
+
98
+
99
+ # Unsqueeze to have batch size = 1
100
+ images = images.unsqueeze(0)
101
+ crop_params = crop_params.unsqueeze(0)
102
+
103
+ batch_size = len(images)
104
+
105
+ with torch.no_grad():
106
+ # Run the model
107
+ assert cfg.mixed_precision in ("None", "bf16", "fp16")
108
+ if cfg.mixed_precision == "None":
109
+ dtype = torch.float32
110
+ elif cfg.mixed_precision == "bf16":
111
+ dtype = torch.bfloat16
112
+ elif cfg.mixed_precision == "fp16":
113
+ dtype = torch.float16
114
+ else:
115
+ raise NotImplementedError(f"dtype {cfg.mixed_precision} is not supported now")
116
+
117
+ predictions = run_one_scene(
118
+ model,
119
+ images,
120
+ crop_params=crop_params,
121
+ query_frame_num=cfg.query_frame_num,
122
+ image_paths=image_paths,
123
+ dtype=dtype,
124
+ cfg=cfg,
125
+ )
126
+
127
+ # Export prediction as colmap format
128
+ reconstruction_pycolmap = predictions["reconstruction"]
129
+ output_path = os.path.join("output", seq_name)
130
+ print("-" * 50)
131
+ print(f"The output has been saved in COLMAP style at: {output_path} ")
132
+ os.makedirs(output_path, exist_ok=True)
133
+ reconstruction_pycolmap.write(output_path)
134
+
135
+ pred_cameras_PT3D = predictions["pred_cameras_PT3D"]
136
+
137
+ if cfg.visualize:
138
+ if "points3D_rgb" in predictions:
139
+ pcl = Pointclouds(points=predictions["points3D"][None], features=predictions["points3D_rgb"][None])
140
+ else:
141
+ pcl = Pointclouds(points=predictions["points3D"][None])
142
+
143
+ visual_cameras = PerspectiveCamerasVisual(
144
+ R=pred_cameras_PT3D.R,
145
+ T=pred_cameras_PT3D.T,
146
+ device=pred_cameras_PT3D.device,
147
+ )
148
+
149
+ visual_dict = {"scenes": {"points": pcl, "cameras": visual_cameras}}
150
+
151
+ fig = plot_scene(visual_dict, camera_scale=0.05)
152
+
153
+ env_name = f"demo_visual_{seq_name}"
154
+ print(f"Visualizing the scene by visdom at env: {env_name}")
155
+ viz.plotlyplot(fig, env=env_name, win="3D")
156
+
157
+ return True
158
+
159
+
160
+ def run_one_scene(model, images, crop_params=None, query_frame_num=3, image_paths=None, dtype=None, cfg=None):
161
+ """
162
+ images have been normalized to the range [0, 1] instead of [0, 255]
163
+ """
164
+ batch_num, frame_num, image_dim, height, width = images.shape
165
+ device = images.device
166
+ reshaped_image = images.reshape(batch_num * frame_num, image_dim, height, width)
167
+
168
+ predictions = {}
169
+ extra_dict = {}
170
+
171
+ camera_predictor = model.camera_predictor
172
+ track_predictor = model.track_predictor
173
+ triangulator = model.triangulator
174
+
175
+ # Find the query frames
176
+ # First use DINO to find the most common frame among all the input frames
177
+ # i.e., the one has highest (average) cosine similarity to all others
178
+ # Then use farthest_point_sampling to find the next ones
179
+ # The number of query frames is determined by query_frame_num
180
+
181
+ with autocast(dtype=dtype):
182
+ query_frame_indexes = find_query_frame_indexes(reshaped_image, camera_predictor, frame_num)
183
+
184
+ image_paths = [os.path.basename(imgpath) for imgpath in image_paths]
185
+
186
+ if cfg.center_order:
187
+ # The code below switchs the first frame (frame 0) to the most common frame
188
+ center_frame_index = query_frame_indexes[0]
189
+ center_order = calculate_index_mappings(center_frame_index, frame_num, device=device)
190
+
191
+ images, crop_params = switch_tensor_order([images, crop_params], center_order, dim=1)
192
+ reshaped_image = switch_tensor_order([reshaped_image], center_order, dim=0)[0]
193
+
194
+ image_paths = [image_paths[i] for i in center_order.cpu().numpy().tolist()]
195
+
196
+ # Also update query_frame_indexes:
197
+ query_frame_indexes = [center_frame_index if x == 0 else x for x in query_frame_indexes]
198
+ query_frame_indexes[0] = 0
199
+
200
+ # only pick query_frame_num
201
+ query_frame_indexes = query_frame_indexes[:query_frame_num]
202
+
203
+ # Prepare image feature maps for tracker
204
+ fmaps_for_tracker = track_predictor.process_images_to_fmaps(images)
205
+
206
+ # Predict tracks
207
+ with autocast(dtype=dtype):
208
+ pred_track, pred_vis, pred_score = predict_tracks(
209
+ cfg.query_method,
210
+ cfg.max_query_pts,
211
+ track_predictor,
212
+ images,
213
+ fmaps_for_tracker,
214
+ query_frame_indexes,
215
+ frame_num,
216
+ device,
217
+ cfg,
218
+ )
219
+
220
+ if cfg.comple_nonvis:
221
+ pred_track, pred_vis, pred_score = comple_nonvis_frames(
222
+ track_predictor,
223
+ images,
224
+ fmaps_for_tracker,
225
+ frame_num,
226
+ device,
227
+ pred_track,
228
+ pred_vis,
229
+ pred_score,
230
+ 500,
231
+ cfg=cfg,
232
+ )
233
+
234
+ torch.cuda.empty_cache()
235
+
236
+ # If necessary, force all the predictions at the padding areas as non-visible
237
+ if crop_params is not None:
238
+ boundaries = crop_params[:, :, -4:-2].abs().to(device)
239
+ boundaries = torch.cat([boundaries, reshaped_image.shape[-1] - boundaries], dim=-1)
240
+ hvis = torch.logical_and(
241
+ pred_track[..., 1] >= boundaries[:, :, 1:2], pred_track[..., 1] <= boundaries[:, :, 3:4]
242
+ )
243
+ wvis = torch.logical_and(
244
+ pred_track[..., 0] >= boundaries[:, :, 0:1], pred_track[..., 0] <= boundaries[:, :, 2:3]
245
+ )
246
+ force_vis = torch.logical_and(hvis, wvis)
247
+ pred_vis = pred_vis * force_vis.float()
248
+
249
+ # TODO: plot 2D matches
250
+ if cfg.use_poselib:
251
+ estimate_preliminary_cameras_fn = estimate_preliminary_cameras_poselib
252
+ else:
253
+ estimate_preliminary_cameras_fn = estimate_preliminary_cameras
254
+
255
+ # Estimate preliminary_cameras by recovering fundamental/essential/homography matrix from 2D matches
256
+ # By default, we use fundamental matrix estimation with 7p/8p+LORANSAC
257
+ # All the operations are batched and differentiable (if necessary)
258
+ # except when you enable use_poselib to save GPU memory
259
+ _, preliminary_dict = estimate_preliminary_cameras_fn(
260
+ pred_track,
261
+ pred_vis,
262
+ width,
263
+ height,
264
+ tracks_score=pred_score,
265
+ max_error=cfg.fmat_thres,
266
+ loopresidual=True,
267
+ # max_ransac_iters=cfg.max_ransac_iters,
268
+ )
269
+
270
+ pose_predictions = camera_predictor(reshaped_image, batch_size=batch_num)
271
+
272
+ pred_cameras = pose_predictions["pred_cameras"]
273
+
274
+ # Conduct Triangulation and Bundle Adjustment
275
+ (
276
+ BA_cameras_PT3D,
277
+ extrinsics_opencv,
278
+ intrinsics_opencv,
279
+ points3D,
280
+ points3D_rgb,
281
+ reconstruction,
282
+ valid_frame_mask,
283
+ ) = triangulator(
284
+ pred_cameras,
285
+ pred_track,
286
+ pred_vis,
287
+ images,
288
+ preliminary_dict,
289
+ image_paths=image_paths,
290
+ crop_params=crop_params,
291
+ pred_score=pred_score,
292
+ fmat_thres=cfg.fmat_thres,
293
+ BA_iters=cfg.BA_iters,
294
+ max_reproj_error = cfg.max_reproj_error,
295
+ init_max_reproj_error=cfg.init_max_reproj_error,
296
+ cfg=cfg,
297
+ )
298
+
299
+ if cfg.center_order:
300
+ # NOTE we changed the image order previously, now we need to switch it back
301
+ BA_cameras_PT3D = BA_cameras_PT3D[center_order]
302
+ extrinsics_opencv = extrinsics_opencv[center_order]
303
+ intrinsics_opencv = intrinsics_opencv[center_order]
304
+
305
+ predictions["pred_cameras_PT3D"] = BA_cameras_PT3D
306
+ predictions["extrinsics_opencv"] = extrinsics_opencv
307
+ predictions["intrinsics_opencv"] = intrinsics_opencv
308
+ predictions["points3D"] = points3D
309
+ predictions["points3D_rgb"] = points3D_rgb
310
+ predictions["reconstruction"] = reconstruction
311
+ return predictions
312
+
313
+
314
+ def predict_tracks(
315
+ query_method,
316
+ max_query_pts,
317
+ track_predictor,
318
+ images,
319
+ fmaps_for_tracker,
320
+ query_frame_indexes,
321
+ frame_num,
322
+ device,
323
+ cfg=None,
324
+ ):
325
+ pred_track_list = []
326
+ pred_vis_list = []
327
+ pred_score_list = []
328
+
329
+ for query_index in query_frame_indexes:
330
+ print(f"Predicting tracks with query_index = {query_index}")
331
+
332
+ # Find query_points at the query frame
333
+ query_points = get_query_points(images[:, query_index], query_method, max_query_pts)
334
+
335
+ # Switch so that query_index frame stays at the first frame
336
+ # This largely simplifies the code structure of tracker
337
+ new_order = calculate_index_mappings(query_index, frame_num, device=device)
338
+ images_feed, fmaps_feed = switch_tensor_order([images, fmaps_for_tracker], new_order)
339
+
340
+ # Feed into track predictor
341
+ fine_pred_track, _, pred_vis, pred_score = track_predictor(images_feed, query_points, fmaps=fmaps_feed)
342
+
343
+ # Switch back the predictions
344
+ fine_pred_track, pred_vis, pred_score = switch_tensor_order([fine_pred_track, pred_vis, pred_score], new_order)
345
+
346
+ # Append predictions for different queries
347
+ pred_track_list.append(fine_pred_track)
348
+ pred_vis_list.append(pred_vis)
349
+ pred_score_list.append(pred_score)
350
+
351
+ pred_track = torch.cat(pred_track_list, dim=2)
352
+ pred_vis = torch.cat(pred_vis_list, dim=2)
353
+ pred_score = torch.cat(pred_score_list, dim=2)
354
+
355
+ return pred_track, pred_vis, pred_score
356
+
357
+
358
+ def comple_nonvis_frames(
359
+ track_predictor,
360
+ images,
361
+ fmaps_for_tracker,
362
+ frame_num,
363
+ device,
364
+ pred_track,
365
+ pred_vis,
366
+ pred_score,
367
+ min_vis=500,
368
+ cfg=None,
369
+ ):
370
+ # if a frame has too few visible inlier, use it as a query
371
+ non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
372
+ last_query = -1
373
+ while len(non_vis_frames) > 0:
374
+ print("Processing non visible frames")
375
+ print(non_vis_frames)
376
+ if non_vis_frames[0] == last_query:
377
+ print("The non vis frame still does not has enough 2D matches")
378
+ pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
379
+ "sp+sift+aliked",
380
+ cfg.max_query_pts // 2,
381
+ track_predictor,
382
+ images,
383
+ fmaps_for_tracker,
384
+ non_vis_frames,
385
+ frame_num,
386
+ device,
387
+ cfg,
388
+ )
389
+ # concat predictions
390
+ pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
391
+ pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
392
+ pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
393
+ break
394
+
395
+ non_vis_query_list = [non_vis_frames[0]]
396
+ last_query = non_vis_frames[0]
397
+ pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
398
+ cfg.query_method,
399
+ cfg.max_query_pts,
400
+ track_predictor,
401
+ images,
402
+ fmaps_for_tracker,
403
+ non_vis_query_list,
404
+ frame_num,
405
+ device,
406
+ cfg,
407
+ )
408
+
409
+ # concat predictions
410
+ pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
411
+ pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
412
+ pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
413
+ non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
414
+ return pred_track, pred_vis, pred_score
415
+
416
+
417
+ def find_query_frame_indexes(reshaped_image, camera_predictor, query_frame_num, image_size=336):
418
+ # Downsample image to image_size x image_size
419
+ # because we found it is unnecessary to use high resolution
420
+ rgbs = F.interpolate(reshaped_image, (image_size, image_size), mode="bilinear", align_corners=True)
421
+ rgbs = camera_predictor._resnet_normalize_image(rgbs)
422
+
423
+ # Get the image features (patch level)
424
+ frame_feat = camera_predictor.backbone(rgbs, is_training=True)
425
+ frame_feat = frame_feat["x_norm_patchtokens"]
426
+ frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
427
+
428
+ # Compute the similiarty matrix
429
+ frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
430
+ similarity_matrix = torch.bmm(frame_feat_norm, frame_feat_norm.transpose(-1, -2))
431
+ similarity_matrix = similarity_matrix.mean(dim=0)
432
+ distance_matrix = 1 - similarity_matrix.clone()
433
+
434
+ # Ignore self-pairing
435
+ similarity_matrix.fill_diagonal_(0)
436
+
437
+ similarity_sum = similarity_matrix.sum(dim=1)
438
+
439
+ # Find the most common frame
440
+ most_common_frame_index = torch.argmax(similarity_sum).item()
441
+
442
+ # Conduct FPS sampling
443
+ # Starting from the most_common_frame_index,
444
+ # try to find the farthest frame,
445
+ # then the farthest to the last found frame
446
+ # (frames are not allowed to be found twice)
447
+ fps_idx = farthest_point_sampling(distance_matrix, query_frame_num, most_common_frame_index)
448
+
449
+ return fps_idx
450
+
451
+
452
+ def get_query_points(query_image, query_method, max_query_num=4096, det_thres=0.005):
453
+ # Run superpoint and sift on the target frame
454
+ # Feel free to modify for your own
455
+
456
+ methods = query_method.split("+")
457
+ pred_points = []
458
+
459
+ for method in methods:
460
+ if "sp" in method:
461
+ extractor = SuperPoint(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
462
+ elif "sift" in method:
463
+ extractor = SIFT(max_num_keypoints=max_query_num).cuda().eval()
464
+ elif "aliked" in method:
465
+ extractor = ALIKED(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
466
+ else:
467
+ raise NotImplementedError(f"query method {method} is not supprted now")
468
+
469
+ query_points = extractor.extract(query_image)["keypoints"]
470
+ pred_points.append(query_points)
471
+
472
+ query_points = torch.cat(pred_points, dim=1)
473
+
474
+ if query_points.shape[1] > max_query_num:
475
+ random_point_indices = torch.randperm(query_points.shape[1])[:max_query_num]
476
+ query_points = query_points[:, random_point_indices, :]
477
+
478
+ return query_points
479
+
480
+
481
+ def seed_all_random_engines(seed: int) -> None:
482
+ np.random.seed(seed)
483
+ torch.manual_seed(seed)
484
+ random.seed(seed)
485
+
486
+
487
+ if __name__ == "__main__":
488
+ with torch.no_grad():
489
+ demo_fn()
vggsfm/examples/apple/images/frame000007.jpg ADDED
vggsfm/examples/apple/images/frame000012.jpg ADDED
vggsfm/examples/apple/images/frame000017.jpg ADDED
vggsfm/examples/apple/images/frame000019.jpg ADDED
vggsfm/examples/apple/images/frame000024.jpg ADDED
vggsfm/examples/apple/images/frame000025.jpg ADDED
vggsfm/examples/apple/images/frame000043.jpg ADDED
vggsfm/examples/apple/images/frame000052.jpg ADDED
vggsfm/examples/apple/images/frame000070.jpg ADDED
vggsfm/examples/apple/images/frame000077.jpg ADDED
vggsfm/examples/apple/images/frame000085.jpg ADDED
vggsfm/examples/apple/images/frame000096.jpg ADDED
vggsfm/examples/apple/images/frame000128.jpg ADDED
vggsfm/examples/apple/images/frame000145.jpg ADDED
vggsfm/examples/apple/images/frame000160.jpg ADDED
vggsfm/examples/apple/images/frame000162.jpg ADDED
vggsfm/examples/apple/images/frame000168.jpg ADDED
vggsfm/examples/apple/images/frame000172.jpg ADDED
vggsfm/examples/apple/images/frame000191.jpg ADDED
vggsfm/examples/apple/images/frame000200.jpg ADDED
vggsfm/examples/british_museum/images/29057984_287139632.jpg ADDED
vggsfm/examples/british_museum/images/32630292_7166579210.jpg ADDED
vggsfm/examples/british_museum/images/45839934_4117745134.jpg ADDED
vggsfm/examples/british_museum/images/51004432_567773767.jpg ADDED
vggsfm/examples/british_museum/images/62620282_3728576515.jpg ADDED
vggsfm/examples/british_museum/images/71931631_7212707886.jpg ADDED
vggsfm/examples/british_museum/images/78600497_407639599.jpg ADDED
vggsfm/examples/british_museum/images/80340357_5029510336.jpg ADDED
vggsfm/examples/british_museum/images/81272348_2712949069.jpg ADDED
vggsfm/examples/british_museum/images/93266801_2335569192.jpg ADDED
vggsfm/examples/cake/images/frame000020.jpg ADDED
vggsfm/examples/cake/images/frame000069.jpg ADDED
vggsfm/examples/cake/images/frame000096.jpg ADDED
vggsfm/examples/cake/images/frame000112.jpg ADDED
vggsfm/examples/cake/images/frame000146.jpg ADDED
vggsfm/examples/cake/images/frame000149.jpg ADDED
vggsfm/examples/cake/images/frame000166.jpg ADDED
vggsfm/examples/cake/images/frame000169.jpg ADDED
vggsfm/install.sh ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # This Script Assumes Python 3.10, CUDA 12.1
8
+
9
+ conda deactivate
10
+
11
+ # Set environment variables
12
+ export ENV_NAME=vggsfm
13
+ export PYTHON_VERSION=3.10
14
+ export PYTORCH_VERSION=2.1.0
15
+ export CUDA_VERSION=12.1
16
+
17
+ # Create a new conda environment and activate it
18
+ conda create -n $ENV_NAME python=$PYTHON_VERSION
19
+ conda activate $ENV_NAME
20
+
21
+ # Install PyTorch, torchvision, and PyTorch3D using conda
22
+ conda install pytorch=$PYTORCH_VERSION torchvision pytorch-cuda=$CUDA_VERSION -c pytorch -c nvidia
23
+ conda install -c fvcore -c iopath -c conda-forge fvcore iopath
24
+ conda install pytorch3d -c pytorch3d
25
+
26
+ # Install pip packages
27
+ pip install hydra-core --upgrade
28
+ pip install omegaconf opencv-python einops visdom
29
+ pip install accelerate==0.24.0
30
+
31
+ # Install LightGlue
32
+ git clone https://github.com/cvg/LightGlue.git dependency/LightGlue
33
+
34
+ cd dependency/LightGlue/
35
+ python -m pip install -e . # editable mode
36
+ cd ../../
37
+
38
+ # Force numpy <2
39
+ pip install numpy==1.26.3
40
+
41
+ # Ensure the version of pycolmap is 0.6.1
42
+ pip install pycolmap==0.6.1
43
+
44
+ # (Optional) Install poselib
45
+ pip install https://huggingface.co/facebook/VGGSfM/resolve/main/poselib-2.0.2-cp310-cp310-linux_x86_64.whl
46
+
47
+
vggsfm/minipytorch3d/__init__.py ADDED
File without changes
vggsfm/minipytorch3d/cameras.py ADDED
@@ -0,0 +1,1722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # pyre-unsafe
8
+
9
+ import math
10
+ import warnings
11
+ from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
12
+
13
+ import numpy as np
14
+ import torch
15
+ import torch.nn.functional as F
16
+
17
+ # from pytorch3d.common.datatypes import Device
18
+
19
+ from .device_utils import Device, get_device, make_device
20
+ from .transform3d import Rotate, Transform3d, Translate
21
+ from .renderer_utils import convert_to_tensors_and_broadcast, TensorProperties
22
+
23
+
24
+ # Default values for rotation and translation matrices.
25
+ _R = torch.eye(3)[None] # (1, 3, 3)
26
+ _T = torch.zeros(1, 3) # (1, 3)
27
+
28
+ # An input which is a float per batch element
29
+ _BatchFloatType = Union[float, Sequence[float], torch.Tensor]
30
+
31
+ # one or two floats per batch element
32
+ _FocalLengthType = Union[float, Sequence[Tuple[float]], Sequence[Tuple[float, float]], torch.Tensor]
33
+
34
+
35
+ class CamerasBase(TensorProperties):
36
+ """
37
+ `CamerasBase` implements a base class for all cameras.
38
+
39
+ For cameras, there are four different coordinate systems (or spaces)
40
+ - World coordinate system: This is the system the object lives - the world.
41
+ - Camera view coordinate system: This is the system that has its origin on
42
+ the camera and the Z-axis perpendicular to the image plane.
43
+ In PyTorch3D, we assume that +X points left, and +Y points up and
44
+ +Z points out from the image plane.
45
+ The transformation from world --> view happens after applying a rotation (R)
46
+ and translation (T)
47
+ - NDC coordinate system: This is the normalized coordinate system that confines
48
+ points in a volume the rendered part of the object or scene, also known as
49
+ view volume. For square images, given the PyTorch3D convention, (+1, +1, znear)
50
+ is the top left near corner, and (-1, -1, zfar) is the bottom right far
51
+ corner of the volume.
52
+ The transformation from view --> NDC happens after applying the camera
53
+ projection matrix (P) if defined in NDC space.
54
+ For non square images, we scale the points such that smallest side
55
+ has range [-1, 1] and the largest side has range [-u, u], with u > 1.
56
+ - Screen coordinate system: This is another representation of the view volume with
57
+ the XY coordinates defined in image space instead of a normalized space.
58
+
59
+ An illustration of the coordinate systems can be found in pytorch3d/docs/notes/cameras.md.
60
+
61
+ CameraBase defines methods that are common to all camera models:
62
+ - `get_camera_center` that returns the optical center of the camera in
63
+ world coordinates
64
+ - `get_world_to_view_transform` which returns a 3D transform from
65
+ world coordinates to the camera view coordinates (R, T)
66
+ - `get_full_projection_transform` which composes the projection
67
+ transform (P) with the world-to-view transform (R, T)
68
+ - `transform_points` which takes a set of input points in world coordinates and
69
+ projects to the space the camera is defined in (NDC or screen)
70
+ - `get_ndc_camera_transform` which defines the transform from screen/NDC to
71
+ PyTorch3D's NDC space
72
+ - `transform_points_ndc` which takes a set of points in world coordinates and
73
+ projects them to PyTorch3D's NDC space
74
+ - `transform_points_screen` which takes a set of points in world coordinates and
75
+ projects them to screen space
76
+
77
+ For each new camera, one should implement the `get_projection_transform`
78
+ routine that returns the mapping from camera view coordinates to camera
79
+ coordinates (NDC or screen).
80
+
81
+ Another useful function that is specific to each camera model is
82
+ `unproject_points` which sends points from camera coordinates (NDC or screen)
83
+ back to camera view or world coordinates depending on the `world_coordinates`
84
+ boolean argument of the function.
85
+ """
86
+
87
+ # Used in __getitem__ to index the relevant fields
88
+ # When creating a new camera, this should be set in the __init__
89
+ _FIELDS: Tuple[str, ...] = ()
90
+
91
+ # Names of fields which are a constant property of the whole batch, rather
92
+ # than themselves a batch of data.
93
+ # When joining objects into a batch, they will have to agree.
94
+ _SHARED_FIELDS: Tuple[str, ...] = ()
95
+
96
+ def get_projection_transform(self, **kwargs):
97
+ """
98
+ Calculate the projective transformation matrix.
99
+
100
+ Args:
101
+ **kwargs: parameters for the projection can be passed in as keyword
102
+ arguments to override the default values set in `__init__`.
103
+
104
+ Return:
105
+ a `Transform3d` object which represents a batch of projection
106
+ matrices of shape (N, 3, 3)
107
+ """
108
+ raise NotImplementedError()
109
+
110
+ def unproject_points(self, xy_depth: torch.Tensor, **kwargs):
111
+ """
112
+ Transform input points from camera coordinates (NDC or screen)
113
+ to the world / camera coordinates.
114
+
115
+ Each of the input points `xy_depth` of shape (..., 3) is
116
+ a concatenation of the x, y location and its depth.
117
+
118
+ For instance, for an input 2D tensor of shape `(num_points, 3)`
119
+ `xy_depth` takes the following form:
120
+ `xy_depth[i] = [x[i], y[i], depth[i]]`,
121
+ for a each point at an index `i`.
122
+
123
+ The following example demonstrates the relationship between
124
+ `transform_points` and `unproject_points`:
125
+
126
+ .. code-block:: python
127
+
128
+ cameras = # camera object derived from CamerasBase
129
+ xyz = # 3D points of shape (batch_size, num_points, 3)
130
+ # transform xyz to the camera view coordinates
131
+ xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
132
+ # extract the depth of each point as the 3rd coord of xyz_cam
133
+ depth = xyz_cam[:, :, 2:]
134
+ # project the points xyz to the camera
135
+ xy = cameras.transform_points(xyz)[:, :, :2]
136
+ # append depth to xy
137
+ xy_depth = torch.cat((xy, depth), dim=2)
138
+ # unproject to the world coordinates
139
+ xyz_unproj_world = cameras.unproject_points(xy_depth, world_coordinates=True)
140
+ print(torch.allclose(xyz, xyz_unproj_world)) # True
141
+ # unproject to the camera coordinates
142
+ xyz_unproj = cameras.unproject_points(xy_depth, world_coordinates=False)
143
+ print(torch.allclose(xyz_cam, xyz_unproj)) # True
144
+
145
+ Args:
146
+ xy_depth: torch tensor of shape (..., 3).
147
+ world_coordinates: If `True`, unprojects the points back to world
148
+ coordinates using the camera extrinsics `R` and `T`.
149
+ `False` ignores `R` and `T` and unprojects to
150
+ the camera view coordinates.
151
+ from_ndc: If `False` (default), assumes xy part of input is in
152
+ NDC space if self.in_ndc(), otherwise in screen space. If
153
+ `True`, assumes xy is in NDC space even if the camera
154
+ is defined in screen space.
155
+
156
+ Returns
157
+ new_points: unprojected points with the same shape as `xy_depth`.
158
+ """
159
+ raise NotImplementedError()
160
+
161
+ def get_camera_center(self, **kwargs) -> torch.Tensor:
162
+ """
163
+ Return the 3D location of the camera optical center
164
+ in the world coordinates.
165
+
166
+ Args:
167
+ **kwargs: parameters for the camera extrinsics can be passed in
168
+ as keyword arguments to override the default values
169
+ set in __init__.
170
+
171
+ Setting R or T here will update the values set in init as these
172
+ values may be needed later on in the rendering pipeline e.g. for
173
+ lighting calculations.
174
+
175
+ Returns:
176
+ C: a batch of 3D locations of shape (N, 3) denoting
177
+ the locations of the center of each camera in the batch.
178
+ """
179
+ w2v_trans = self.get_world_to_view_transform(**kwargs)
180
+ P = w2v_trans.inverse().get_matrix()
181
+ # the camera center is the translation component (the first 3 elements
182
+ # of the last row) of the inverted world-to-view
183
+ # transform (4x4 RT matrix)
184
+ C = P[:, 3, :3]
185
+ return C
186
+
187
+ def get_world_to_view_transform(self, **kwargs) -> Transform3d:
188
+ """
189
+ Return the world-to-view transform.
190
+
191
+ Args:
192
+ **kwargs: parameters for the camera extrinsics can be passed in
193
+ as keyword arguments to override the default values
194
+ set in __init__.
195
+
196
+ Setting R and T here will update the values set in init as these
197
+ values may be needed later on in the rendering pipeline e.g. for
198
+ lighting calculations.
199
+
200
+ Returns:
201
+ A Transform3d object which represents a batch of transforms
202
+ of shape (N, 3, 3)
203
+ """
204
+ R: torch.Tensor = kwargs.get("R", self.R)
205
+ T: torch.Tensor = kwargs.get("T", self.T)
206
+ self.R = R
207
+ self.T = T
208
+ world_to_view_transform = get_world_to_view_transform(R=R, T=T)
209
+ return world_to_view_transform
210
+
211
+ def get_full_projection_transform(self, **kwargs) -> Transform3d:
212
+ """
213
+ Return the full world-to-camera transform composing the
214
+ world-to-view and view-to-camera transforms.
215
+ If camera is defined in NDC space, the projected points are in NDC space.
216
+ If camera is defined in screen space, the projected points are in screen space.
217
+
218
+ Args:
219
+ **kwargs: parameters for the projection transforms can be passed in
220
+ as keyword arguments to override the default values
221
+ set in __init__.
222
+
223
+ Setting R and T here will update the values set in init as these
224
+ values may be needed later on in the rendering pipeline e.g. for
225
+ lighting calculations.
226
+
227
+ Returns:
228
+ a Transform3d object which represents a batch of transforms
229
+ of shape (N, 3, 3)
230
+ """
231
+ self.R: torch.Tensor = kwargs.get("R", self.R)
232
+ self.T: torch.Tensor = kwargs.get("T", self.T)
233
+ world_to_view_transform = self.get_world_to_view_transform(R=self.R, T=self.T)
234
+ view_to_proj_transform = self.get_projection_transform(**kwargs)
235
+ return world_to_view_transform.compose(view_to_proj_transform)
236
+
237
+ def transform_points(self, points, eps: Optional[float] = None, **kwargs) -> torch.Tensor:
238
+ """
239
+ Transform input points from world to camera space.
240
+ If camera is defined in NDC space, the projected points are in NDC space.
241
+ If camera is defined in screen space, the projected points are in screen space.
242
+
243
+ For `CamerasBase.transform_points`, setting `eps > 0`
244
+ stabilizes gradients since it leads to avoiding division
245
+ by excessively low numbers for points close to the camera plane.
246
+
247
+ Args:
248
+ points: torch tensor of shape (..., 3).
249
+ eps: If eps!=None, the argument is used to clamp the
250
+ divisor in the homogeneous normalization of the points
251
+ transformed to the ndc space. Please see
252
+ `transforms.Transform3d.transform_points` for details.
253
+
254
+ For `CamerasBase.transform_points`, setting `eps > 0`
255
+ stabilizes gradients since it leads to avoiding division
256
+ by excessively low numbers for points close to the
257
+ camera plane.
258
+
259
+ Returns
260
+ new_points: transformed points with the same shape as the input.
261
+ """
262
+ world_to_proj_transform = self.get_full_projection_transform(**kwargs)
263
+ return world_to_proj_transform.transform_points(points, eps=eps)
264
+
265
+ def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
266
+ """
267
+ Returns the transform from camera projection space (screen or NDC) to NDC space.
268
+ For cameras that can be specified in screen space, this transform
269
+ allows points to be converted from screen to NDC space.
270
+ The default transform scales the points from [0, W]x[0, H]
271
+ to [-1, 1]x[-u, u] or [-u, u]x[-1, 1] where u > 1 is the aspect ratio of the image.
272
+ This function should be modified per camera definitions if need be,
273
+ e.g. for Perspective/Orthographic cameras we provide a custom implementation.
274
+ This transform assumes PyTorch3D coordinate system conventions for
275
+ both the NDC space and the input points.
276
+
277
+ This transform interfaces with the PyTorch3D renderer which assumes
278
+ input points to the renderer to be in NDC space.
279
+ """
280
+ if self.in_ndc():
281
+ return Transform3d(device=self.device, dtype=torch.float32)
282
+ else:
283
+ # For custom cameras which can be defined in screen space,
284
+ # users might might have to implement the screen to NDC transform based
285
+ # on the definition of the camera parameters.
286
+ # See PerspectiveCameras/OrthographicCameras for an example.
287
+ # We don't flip xy because we assume that world points are in
288
+ # PyTorch3D coordinates, and thus conversion from screen to ndc
289
+ # is a mere scaling from image to [-1, 1] scale.
290
+ image_size = kwargs.get("image_size", self.get_image_size())
291
+ return get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
292
+
293
+ def transform_points_ndc(self, points, eps: Optional[float] = None, **kwargs) -> torch.Tensor:
294
+ """
295
+ Transforms points from PyTorch3D world/camera space to NDC space.
296
+ Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up.
297
+ Output points are in NDC space: +X left, +Y up, origin at image center.
298
+
299
+ Args:
300
+ points: torch tensor of shape (..., 3).
301
+ eps: If eps!=None, the argument is used to clamp the
302
+ divisor in the homogeneous normalization of the points
303
+ transformed to the ndc space. Please see
304
+ `transforms.Transform3d.transform_points` for details.
305
+
306
+ For `CamerasBase.transform_points`, setting `eps > 0`
307
+ stabilizes gradients since it leads to avoiding division
308
+ by excessively low numbers for points close to the
309
+ camera plane.
310
+
311
+ Returns
312
+ new_points: transformed points with the same shape as the input.
313
+ """
314
+ world_to_ndc_transform = self.get_full_projection_transform(**kwargs)
315
+ if not self.in_ndc():
316
+ to_ndc_transform = self.get_ndc_camera_transform(**kwargs)
317
+ world_to_ndc_transform = world_to_ndc_transform.compose(to_ndc_transform)
318
+
319
+ return world_to_ndc_transform.transform_points(points, eps=eps)
320
+
321
+ def transform_points_screen(
322
+ self, points, eps: Optional[float] = None, with_xyflip: bool = True, **kwargs
323
+ ) -> torch.Tensor:
324
+ """
325
+ Transforms points from PyTorch3D world/camera space to screen space.
326
+ Input points follow the PyTorch3D coordinate system conventions: +X left, +Y up.
327
+ Output points are in screen space: +X right, +Y down, origin at top left corner.
328
+
329
+ Args:
330
+ points: torch tensor of shape (..., 3).
331
+ eps: If eps!=None, the argument is used to clamp the
332
+ divisor in the homogeneous normalization of the points
333
+ transformed to the ndc space. Please see
334
+ `transforms.Transform3d.transform_points` for details.
335
+
336
+ For `CamerasBase.transform_points`, setting `eps > 0`
337
+ stabilizes gradients since it leads to avoiding division
338
+ by excessively low numbers for points close to the
339
+ camera plane.
340
+ with_xyflip: If True, flip x and y directions. In world/camera/ndc coords,
341
+ +x points to the left and +y up. If with_xyflip is true, in screen
342
+ coords +x points right, and +y down, following the usual RGB image
343
+ convention. Warning: do not set to False unless you know what you're
344
+ doing!
345
+
346
+ Returns
347
+ new_points: transformed points with the same shape as the input.
348
+ """
349
+ points_ndc = self.transform_points_ndc(points, eps=eps, **kwargs)
350
+ image_size = kwargs.get("image_size", self.get_image_size())
351
+ return get_ndc_to_screen_transform(self, with_xyflip=with_xyflip, image_size=image_size).transform_points(
352
+ points_ndc, eps=eps
353
+ )
354
+
355
+ def clone(self):
356
+ """
357
+ Returns a copy of `self`.
358
+ """
359
+ cam_type = type(self)
360
+ other = cam_type(device=self.device)
361
+ return super().clone(other)
362
+
363
+ def is_perspective(self):
364
+ raise NotImplementedError()
365
+
366
+ def in_ndc(self):
367
+ """
368
+ Specifies whether the camera is defined in NDC space
369
+ or in screen (image) space
370
+ """
371
+ raise NotImplementedError()
372
+
373
+ def get_znear(self):
374
+ return getattr(self, "znear", None)
375
+
376
+ def get_image_size(self):
377
+ """
378
+ Returns the image size, if provided, expected in the form of (height, width)
379
+ The image size is used for conversion of projected points to screen coordinates.
380
+ """
381
+ return getattr(self, "image_size", None)
382
+
383
+ def __getitem__(self, index: Union[int, List[int], torch.BoolTensor, torch.LongTensor]) -> "CamerasBase":
384
+ """
385
+ Override for the __getitem__ method in TensorProperties which needs to be
386
+ refactored.
387
+
388
+ Args:
389
+ index: an integer index, list/tensor of integer indices, or tensor of boolean
390
+ indicators used to filter all the fields in the cameras given by self._FIELDS.
391
+ Returns:
392
+ an instance of the current cameras class with only the values at the selected index.
393
+ """
394
+
395
+ kwargs = {}
396
+
397
+ tensor_types = {
398
+ # pyre-fixme[16]: Module `cuda` has no attribute `BoolTensor`.
399
+ "bool": (torch.BoolTensor, torch.cuda.BoolTensor),
400
+ # pyre-fixme[16]: Module `cuda` has no attribute `LongTensor`.
401
+ "long": (torch.LongTensor, torch.cuda.LongTensor),
402
+ }
403
+ if not isinstance(index, (int, list, *tensor_types["bool"], *tensor_types["long"])) or (
404
+ isinstance(index, list) and not all(isinstance(i, int) and not isinstance(i, bool) for i in index)
405
+ ):
406
+ msg = "Invalid index type, expected int, List[int] or Bool/LongTensor; got %r"
407
+ raise ValueError(msg % type(index))
408
+
409
+ if isinstance(index, int):
410
+ index = [index]
411
+
412
+ if isinstance(index, tensor_types["bool"]):
413
+ # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
414
+ # LongTensor]` has no attribute `ndim`.
415
+ # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
416
+ # LongTensor]` has no attribute `shape`.
417
+ if index.ndim != 1 or index.shape[0] != len(self):
418
+ raise ValueError(
419
+ # pyre-fixme[16]: Item `List` of `Union[List[int], BoolTensor,
420
+ # LongTensor]` has no attribute `shape`.
421
+ f"Boolean index of shape {index.shape} does not match cameras"
422
+ )
423
+ elif max(index) >= len(self):
424
+ raise IndexError(f"Index {max(index)} is out of bounds for select cameras")
425
+
426
+ for field in self._FIELDS:
427
+ val = getattr(self, field, None)
428
+ if val is None:
429
+ continue
430
+
431
+ # e.g. "in_ndc" is set as attribute "_in_ndc" on the class
432
+ # but provided as "in_ndc" on initialization
433
+ if field.startswith("_"):
434
+ field = field[1:]
435
+
436
+ if isinstance(val, (str, bool)):
437
+ kwargs[field] = val
438
+ elif isinstance(val, torch.Tensor):
439
+ # In the init, all inputs will be converted to
440
+ # tensors before setting as attributes
441
+ kwargs[field] = val[index]
442
+ else:
443
+ raise ValueError(f"Field {field} type is not supported for indexing")
444
+
445
+ kwargs["device"] = self.device
446
+ return self.__class__(**kwargs)
447
+
448
+
449
+ ############################################################
450
+ # Field of View Camera Classes #
451
+ ############################################################
452
+
453
+
454
+ def OpenGLPerspectiveCameras(
455
+ znear: _BatchFloatType = 1.0,
456
+ zfar: _BatchFloatType = 100.0,
457
+ aspect_ratio: _BatchFloatType = 1.0,
458
+ fov: _BatchFloatType = 60.0,
459
+ degrees: bool = True,
460
+ R: torch.Tensor = _R,
461
+ T: torch.Tensor = _T,
462
+ device: Device = "cpu",
463
+ ) -> "FoVPerspectiveCameras":
464
+ """
465
+ OpenGLPerspectiveCameras has been DEPRECATED. Use FoVPerspectiveCameras instead.
466
+ Preserving OpenGLPerspectiveCameras for backward compatibility.
467
+ """
468
+
469
+ warnings.warn(
470
+ """OpenGLPerspectiveCameras is deprecated,
471
+ Use FoVPerspectiveCameras instead.
472
+ OpenGLPerspectiveCameras will be removed in future releases.""",
473
+ PendingDeprecationWarning,
474
+ )
475
+
476
+ return FoVPerspectiveCameras(
477
+ znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, degrees=degrees, R=R, T=T, device=device
478
+ )
479
+
480
+
481
+ class FoVPerspectiveCameras(CamerasBase):
482
+ """
483
+ A class which stores a batch of parameters to generate a batch of
484
+ projection matrices by specifying the field of view.
485
+ The definitions of the parameters follow the OpenGL perspective camera.
486
+
487
+ The extrinsics of the camera (R and T matrices) can also be set in the
488
+ initializer or passed in to `get_full_projection_transform` to get
489
+ the full transformation from world -> ndc.
490
+
491
+ The `transform_points` method calculates the full world -> ndc transform
492
+ and then applies it to the input points.
493
+
494
+ The transforms can also be returned separately as Transform3d objects.
495
+
496
+ * Setting the Aspect Ratio for Non Square Images *
497
+
498
+ If the desired output image size is non square (i.e. a tuple of (H, W) where H != W)
499
+ the aspect ratio needs special consideration: There are two aspect ratios
500
+ to be aware of:
501
+ - the aspect ratio of each pixel
502
+ - the aspect ratio of the output image
503
+ The `aspect_ratio` setting in the FoVPerspectiveCameras sets the
504
+ pixel aspect ratio. When using this camera with the differentiable rasterizer
505
+ be aware that in the rasterizer we assume square pixels, but allow
506
+ variable image aspect ratio (i.e rectangle images).
507
+
508
+ In most cases you will want to set the camera `aspect_ratio=1.0`
509
+ (i.e. square pixels) and only vary the output image dimensions in pixels
510
+ for rasterization.
511
+ """
512
+
513
+ # For __getitem__
514
+ _FIELDS = ("K", "znear", "zfar", "aspect_ratio", "fov", "R", "T", "degrees")
515
+
516
+ _SHARED_FIELDS = ("degrees",)
517
+
518
+ def __init__(
519
+ self,
520
+ znear: _BatchFloatType = 1.0,
521
+ zfar: _BatchFloatType = 100.0,
522
+ aspect_ratio: _BatchFloatType = 1.0,
523
+ fov: _BatchFloatType = 60.0,
524
+ degrees: bool = True,
525
+ R: torch.Tensor = _R,
526
+ T: torch.Tensor = _T,
527
+ K: Optional[torch.Tensor] = None,
528
+ device: Device = "cpu",
529
+ ) -> None:
530
+ """
531
+
532
+ Args:
533
+ znear: near clipping plane of the view frustrum.
534
+ zfar: far clipping plane of the view frustrum.
535
+ aspect_ratio: aspect ratio of the image pixels.
536
+ 1.0 indicates square pixels.
537
+ fov: field of view angle of the camera.
538
+ degrees: bool, set to True if fov is specified in degrees.
539
+ R: Rotation matrix of shape (N, 3, 3)
540
+ T: Translation matrix of shape (N, 3)
541
+ K: (optional) A calibration matrix of shape (N, 4, 4)
542
+ If provided, don't need znear, zfar, fov, aspect_ratio, degrees
543
+ device: Device (as str or torch.device)
544
+ """
545
+ # The initializer formats all inputs to torch tensors and broadcasts
546
+ # all the inputs to have the same batch dimension where necessary.
547
+ super().__init__(device=device, znear=znear, zfar=zfar, aspect_ratio=aspect_ratio, fov=fov, R=R, T=T, K=K)
548
+
549
+ # No need to convert to tensor or broadcast.
550
+ self.degrees = degrees
551
+
552
+ def compute_projection_matrix(self, znear, zfar, fov, aspect_ratio, degrees: bool) -> torch.Tensor:
553
+ """
554
+ Compute the calibration matrix K of shape (N, 4, 4)
555
+
556
+ Args:
557
+ znear: near clipping plane of the view frustrum.
558
+ zfar: far clipping plane of the view frustrum.
559
+ fov: field of view angle of the camera.
560
+ aspect_ratio: aspect ratio of the image pixels.
561
+ 1.0 indicates square pixels.
562
+ degrees: bool, set to True if fov is specified in degrees.
563
+
564
+ Returns:
565
+ torch.FloatTensor of the calibration matrix with shape (N, 4, 4)
566
+ """
567
+ K = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
568
+ ones = torch.ones((self._N), dtype=torch.float32, device=self.device)
569
+ if degrees:
570
+ fov = (np.pi / 180) * fov
571
+
572
+ if not torch.is_tensor(fov):
573
+ fov = torch.tensor(fov, device=self.device)
574
+ tanHalfFov = torch.tan((fov / 2))
575
+ max_y = tanHalfFov * znear
576
+ min_y = -max_y
577
+ max_x = max_y * aspect_ratio
578
+ min_x = -max_x
579
+
580
+ # NOTE: In OpenGL the projection matrix changes the handedness of the
581
+ # coordinate frame. i.e the NDC space positive z direction is the
582
+ # camera space negative z direction. This is because the sign of the z
583
+ # in the projection matrix is set to -1.0.
584
+ # In pytorch3d we maintain a right handed coordinate system throughout
585
+ # so the so the z sign is 1.0.
586
+ z_sign = 1.0
587
+
588
+ # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
589
+ K[:, 0, 0] = 2.0 * znear / (max_x - min_x)
590
+ # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
591
+ K[:, 1, 1] = 2.0 * znear / (max_y - min_y)
592
+ K[:, 0, 2] = (max_x + min_x) / (max_x - min_x)
593
+ K[:, 1, 2] = (max_y + min_y) / (max_y - min_y)
594
+ K[:, 3, 2] = z_sign * ones
595
+
596
+ # NOTE: This maps the z coordinate from [0, 1] where z = 0 if the point
597
+ # is at the near clipping plane and z = 1 when the point is at the far
598
+ # clipping plane.
599
+ K[:, 2, 2] = z_sign * zfar / (zfar - znear)
600
+ K[:, 2, 3] = -(zfar * znear) / (zfar - znear)
601
+
602
+ return K
603
+
604
+ def get_projection_transform(self, **kwargs) -> Transform3d:
605
+ """
606
+ Calculate the perspective projection matrix with a symmetric
607
+ viewing frustrum. Use column major order.
608
+ The viewing frustrum will be projected into ndc, s.t.
609
+ (max_x, max_y) -> (+1, +1)
610
+ (min_x, min_y) -> (-1, -1)
611
+
612
+ Args:
613
+ **kwargs: parameters for the projection can be passed in as keyword
614
+ arguments to override the default values set in `__init__`.
615
+
616
+ Return:
617
+ a Transform3d object which represents a batch of projection
618
+ matrices of shape (N, 4, 4)
619
+
620
+ .. code-block:: python
621
+
622
+ h1 = (max_y + min_y)/(max_y - min_y)
623
+ w1 = (max_x + min_x)/(max_x - min_x)
624
+ tanhalffov = tan((fov/2))
625
+ s1 = 1/tanhalffov
626
+ s2 = 1/(tanhalffov * (aspect_ratio))
627
+
628
+ # To map z to the range [0, 1] use:
629
+ f1 = far / (far - near)
630
+ f2 = -(far * near) / (far - near)
631
+
632
+ # Projection matrix
633
+ K = [
634
+ [s1, 0, w1, 0],
635
+ [0, s2, h1, 0],
636
+ [0, 0, f1, f2],
637
+ [0, 0, 1, 0],
638
+ ]
639
+ """
640
+ K = kwargs.get("K", self.K)
641
+ if K is not None:
642
+ if K.shape != (self._N, 4, 4):
643
+ msg = "Expected K to have shape of (%r, 4, 4)"
644
+ raise ValueError(msg % (self._N))
645
+ else:
646
+ K = self.compute_projection_matrix(
647
+ kwargs.get("znear", self.znear),
648
+ kwargs.get("zfar", self.zfar),
649
+ kwargs.get("fov", self.fov),
650
+ kwargs.get("aspect_ratio", self.aspect_ratio),
651
+ kwargs.get("degrees", self.degrees),
652
+ )
653
+
654
+ # Transpose the projection matrix as PyTorch3D transforms use row vectors.
655
+ transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
656
+ return transform
657
+
658
+ def unproject_points(
659
+ self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs
660
+ ) -> torch.Tensor:
661
+ """>!
662
+ FoV cameras further allow for passing depth in world units
663
+ (`scaled_depth_input=False`) or in the [0, 1]-normalized units
664
+ (`scaled_depth_input=True`)
665
+
666
+ Args:
667
+ scaled_depth_input: If `True`, assumes the input depth is in
668
+ the [0, 1]-normalized units. If `False` the input depth is in
669
+ the world units.
670
+ """
671
+
672
+ # obtain the relevant transformation to ndc
673
+ if world_coordinates:
674
+ to_ndc_transform = self.get_full_projection_transform()
675
+ else:
676
+ to_ndc_transform = self.get_projection_transform()
677
+
678
+ if scaled_depth_input:
679
+ # the input is scaled depth, so we don't have to do anything
680
+ xy_sdepth = xy_depth
681
+ else:
682
+ # parse out important values from the projection matrix
683
+ K_matrix = self.get_projection_transform(**kwargs.copy()).get_matrix()
684
+ # parse out f1, f2 from K_matrix
685
+ unsqueeze_shape = [1] * xy_depth.dim()
686
+ unsqueeze_shape[0] = K_matrix.shape[0]
687
+ f1 = K_matrix[:, 2, 2].reshape(unsqueeze_shape)
688
+ f2 = K_matrix[:, 3, 2].reshape(unsqueeze_shape)
689
+ # get the scaled depth
690
+ sdepth = (f1 * xy_depth[..., 2:3] + f2) / xy_depth[..., 2:3]
691
+ # concatenate xy + scaled depth
692
+ xy_sdepth = torch.cat((xy_depth[..., 0:2], sdepth), dim=-1)
693
+
694
+ # unproject with inverse of the projection
695
+ unprojection_transform = to_ndc_transform.inverse()
696
+ return unprojection_transform.transform_points(xy_sdepth)
697
+
698
+ def is_perspective(self):
699
+ return True
700
+
701
+ def in_ndc(self):
702
+ return True
703
+
704
+
705
+ def OpenGLOrthographicCameras(
706
+ znear: _BatchFloatType = 1.0,
707
+ zfar: _BatchFloatType = 100.0,
708
+ top: _BatchFloatType = 1.0,
709
+ bottom: _BatchFloatType = -1.0,
710
+ left: _BatchFloatType = -1.0,
711
+ right: _BatchFloatType = 1.0,
712
+ scale_xyz=((1.0, 1.0, 1.0),), # (1, 3)
713
+ R: torch.Tensor = _R,
714
+ T: torch.Tensor = _T,
715
+ device: Device = "cpu",
716
+ ) -> "FoVOrthographicCameras":
717
+ """
718
+ OpenGLOrthographicCameras has been DEPRECATED. Use FoVOrthographicCameras instead.
719
+ Preserving OpenGLOrthographicCameras for backward compatibility.
720
+ """
721
+
722
+ warnings.warn(
723
+ """OpenGLOrthographicCameras is deprecated,
724
+ Use FoVOrthographicCameras instead.
725
+ OpenGLOrthographicCameras will be removed in future releases.""",
726
+ PendingDeprecationWarning,
727
+ )
728
+
729
+ return FoVOrthographicCameras(
730
+ znear=znear,
731
+ zfar=zfar,
732
+ max_y=top,
733
+ min_y=bottom,
734
+ max_x=right,
735
+ min_x=left,
736
+ scale_xyz=scale_xyz,
737
+ R=R,
738
+ T=T,
739
+ device=device,
740
+ )
741
+
742
+
743
+ class FoVOrthographicCameras(CamerasBase):
744
+ """
745
+ A class which stores a batch of parameters to generate a batch of
746
+ projection matrices by specifying the field of view.
747
+ The definitions of the parameters follow the OpenGL orthographic camera.
748
+ """
749
+
750
+ # For __getitem__
751
+ _FIELDS = ("K", "znear", "zfar", "R", "T", "max_y", "min_y", "max_x", "min_x", "scale_xyz")
752
+
753
+ def __init__(
754
+ self,
755
+ znear: _BatchFloatType = 1.0,
756
+ zfar: _BatchFloatType = 100.0,
757
+ max_y: _BatchFloatType = 1.0,
758
+ min_y: _BatchFloatType = -1.0,
759
+ max_x: _BatchFloatType = 1.0,
760
+ min_x: _BatchFloatType = -1.0,
761
+ scale_xyz=((1.0, 1.0, 1.0),), # (1, 3)
762
+ R: torch.Tensor = _R,
763
+ T: torch.Tensor = _T,
764
+ K: Optional[torch.Tensor] = None,
765
+ device: Device = "cpu",
766
+ ):
767
+ """
768
+
769
+ Args:
770
+ znear: near clipping plane of the view frustrum.
771
+ zfar: far clipping plane of the view frustrum.
772
+ max_y: maximum y coordinate of the frustrum.
773
+ min_y: minimum y coordinate of the frustrum.
774
+ max_x: maximum x coordinate of the frustrum.
775
+ min_x: minimum x coordinate of the frustrum
776
+ scale_xyz: scale factors for each axis of shape (N, 3).
777
+ R: Rotation matrix of shape (N, 3, 3).
778
+ T: Translation of shape (N, 3).
779
+ K: (optional) A calibration matrix of shape (N, 4, 4)
780
+ If provided, don't need znear, zfar, max_y, min_y, max_x, min_x, scale_xyz
781
+ device: torch.device or string.
782
+
783
+ Only need to set min_x, max_x, min_y, max_y for viewing frustrums
784
+ which are non symmetric about the origin.
785
+ """
786
+ # The initializer formats all inputs to torch tensors and broadcasts
787
+ # all the inputs to have the same batch dimension where necessary.
788
+ super().__init__(
789
+ device=device,
790
+ znear=znear,
791
+ zfar=zfar,
792
+ max_y=max_y,
793
+ min_y=min_y,
794
+ max_x=max_x,
795
+ min_x=min_x,
796
+ scale_xyz=scale_xyz,
797
+ R=R,
798
+ T=T,
799
+ K=K,
800
+ )
801
+
802
+ def compute_projection_matrix(self, znear, zfar, max_x, min_x, max_y, min_y, scale_xyz) -> torch.Tensor:
803
+ """
804
+ Compute the calibration matrix K of shape (N, 4, 4)
805
+
806
+ Args:
807
+ znear: near clipping plane of the view frustrum.
808
+ zfar: far clipping plane of the view frustrum.
809
+ max_x: maximum x coordinate of the frustrum.
810
+ min_x: minimum x coordinate of the frustrum
811
+ max_y: maximum y coordinate of the frustrum.
812
+ min_y: minimum y coordinate of the frustrum.
813
+ scale_xyz: scale factors for each axis of shape (N, 3).
814
+ """
815
+ K = torch.zeros((self._N, 4, 4), dtype=torch.float32, device=self.device)
816
+ ones = torch.ones((self._N), dtype=torch.float32, device=self.device)
817
+ # NOTE: OpenGL flips handedness of coordinate system between camera
818
+ # space and NDC space so z sign is -ve. In PyTorch3D we maintain a
819
+ # right handed coordinate system throughout.
820
+ z_sign = +1.0
821
+
822
+ K[:, 0, 0] = (2.0 / (max_x - min_x)) * scale_xyz[:, 0]
823
+ K[:, 1, 1] = (2.0 / (max_y - min_y)) * scale_xyz[:, 1]
824
+ K[:, 0, 3] = -(max_x + min_x) / (max_x - min_x)
825
+ K[:, 1, 3] = -(max_y + min_y) / (max_y - min_y)
826
+ K[:, 3, 3] = ones
827
+
828
+ # NOTE: This maps the z coordinate to the range [0, 1] and replaces the
829
+ # the OpenGL z normalization to [-1, 1]
830
+ K[:, 2, 2] = z_sign * (1.0 / (zfar - znear)) * scale_xyz[:, 2]
831
+ K[:, 2, 3] = -znear / (zfar - znear)
832
+
833
+ return K
834
+
835
+ def get_projection_transform(self, **kwargs) -> Transform3d:
836
+ """
837
+ Calculate the orthographic projection matrix.
838
+ Use column major order.
839
+
840
+ Args:
841
+ **kwargs: parameters for the projection can be passed in to
842
+ override the default values set in __init__.
843
+ Return:
844
+ a Transform3d object which represents a batch of projection
845
+ matrices of shape (N, 4, 4)
846
+
847
+ .. code-block:: python
848
+
849
+ scale_x = 2 / (max_x - min_x)
850
+ scale_y = 2 / (max_y - min_y)
851
+ scale_z = 2 / (far-near)
852
+ mid_x = (max_x + min_x) / (max_x - min_x)
853
+ mix_y = (max_y + min_y) / (max_y - min_y)
854
+ mid_z = (far + near) / (far - near)
855
+
856
+ K = [
857
+ [scale_x, 0, 0, -mid_x],
858
+ [0, scale_y, 0, -mix_y],
859
+ [0, 0, -scale_z, -mid_z],
860
+ [0, 0, 0, 1],
861
+ ]
862
+ """
863
+ K = kwargs.get("K", self.K)
864
+ if K is not None:
865
+ if K.shape != (self._N, 4, 4):
866
+ msg = "Expected K to have shape of (%r, 4, 4)"
867
+ raise ValueError(msg % (self._N))
868
+ else:
869
+ K = self.compute_projection_matrix(
870
+ kwargs.get("znear", self.znear),
871
+ kwargs.get("zfar", self.zfar),
872
+ kwargs.get("max_x", self.max_x),
873
+ kwargs.get("min_x", self.min_x),
874
+ kwargs.get("max_y", self.max_y),
875
+ kwargs.get("min_y", self.min_y),
876
+ kwargs.get("scale_xyz", self.scale_xyz),
877
+ )
878
+
879
+ transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
880
+ return transform
881
+
882
+ def unproject_points(
883
+ self, xy_depth: torch.Tensor, world_coordinates: bool = True, scaled_depth_input: bool = False, **kwargs
884
+ ) -> torch.Tensor:
885
+ """>!
886
+ FoV cameras further allow for passing depth in world units
887
+ (`scaled_depth_input=False`) or in the [0, 1]-normalized units
888
+ (`scaled_depth_input=True`)
889
+
890
+ Args:
891
+ scaled_depth_input: If `True`, assumes the input depth is in
892
+ the [0, 1]-normalized units. If `False` the input depth is in
893
+ the world units.
894
+ """
895
+
896
+ if world_coordinates:
897
+ to_ndc_transform = self.get_full_projection_transform(**kwargs.copy())
898
+ else:
899
+ to_ndc_transform = self.get_projection_transform(**kwargs.copy())
900
+
901
+ if scaled_depth_input:
902
+ # the input depth is already scaled
903
+ xy_sdepth = xy_depth
904
+ else:
905
+ # we have to obtain the scaled depth first
906
+ K = self.get_projection_transform(**kwargs).get_matrix()
907
+ unsqueeze_shape = [1] * K.dim()
908
+ unsqueeze_shape[0] = K.shape[0]
909
+ mid_z = K[:, 3, 2].reshape(unsqueeze_shape)
910
+ scale_z = K[:, 2, 2].reshape(unsqueeze_shape)
911
+ scaled_depth = scale_z * xy_depth[..., 2:3] + mid_z
912
+ # cat xy and scaled depth
913
+ xy_sdepth = torch.cat((xy_depth[..., :2], scaled_depth), dim=-1)
914
+ # finally invert the transform
915
+ unprojection_transform = to_ndc_transform.inverse()
916
+ return unprojection_transform.transform_points(xy_sdepth)
917
+
918
+ def is_perspective(self):
919
+ return False
920
+
921
+ def in_ndc(self):
922
+ return True
923
+
924
+
925
+ ############################################################
926
+ # MultiView Camera Classes #
927
+ ############################################################
928
+ """
929
+ Note that the MultiView Cameras accept parameters in NDC space.
930
+ """
931
+
932
+
933
+ def SfMPerspectiveCameras(
934
+ focal_length: _FocalLengthType = 1.0,
935
+ principal_point=((0.0, 0.0),),
936
+ R: torch.Tensor = _R,
937
+ T: torch.Tensor = _T,
938
+ device: Device = "cpu",
939
+ ) -> "PerspectiveCameras":
940
+ """
941
+ SfMPerspectiveCameras has been DEPRECATED. Use PerspectiveCameras instead.
942
+ Preserving SfMPerspectiveCameras for backward compatibility.
943
+ """
944
+
945
+ warnings.warn(
946
+ """SfMPerspectiveCameras is deprecated,
947
+ Use PerspectiveCameras instead.
948
+ SfMPerspectiveCameras will be removed in future releases.""",
949
+ PendingDeprecationWarning,
950
+ )
951
+
952
+ return PerspectiveCameras(focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device)
953
+
954
+
955
+ class PerspectiveCameras(CamerasBase):
956
+ """
957
+ A class which stores a batch of parameters to generate a batch of
958
+ transformation matrices using the multi-view geometry convention for
959
+ perspective camera.
960
+
961
+ Parameters for this camera are specified in NDC if `in_ndc` is set to True.
962
+ If parameters are specified in screen space, `in_ndc` must be set to False.
963
+ """
964
+
965
+ # For __getitem__
966
+ _FIELDS = (
967
+ "K",
968
+ "R",
969
+ "T",
970
+ "focal_length",
971
+ "principal_point",
972
+ "_in_ndc", # arg is in_ndc but attribute set as _in_ndc
973
+ "image_size",
974
+ )
975
+
976
+ _SHARED_FIELDS = ("_in_ndc",)
977
+
978
+ def __init__(
979
+ self,
980
+ focal_length: _FocalLengthType = 1.0,
981
+ principal_point=((0.0, 0.0),),
982
+ R: torch.Tensor = _R,
983
+ T: torch.Tensor = _T,
984
+ K: Optional[torch.Tensor] = None,
985
+ device: Device = "cpu",
986
+ in_ndc: bool = True,
987
+ image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
988
+ ) -> None:
989
+ """
990
+
991
+ Args:
992
+ focal_length: Focal length of the camera in world units.
993
+ A tensor of shape (N, 1) or (N, 2) for
994
+ square and non-square pixels respectively.
995
+ principal_point: xy coordinates of the center of
996
+ the principal point of the camera in pixels.
997
+ A tensor of shape (N, 2).
998
+ in_ndc: True if camera parameters are specified in NDC.
999
+ If camera parameters are in screen space, it must
1000
+ be set to False.
1001
+ R: Rotation matrix of shape (N, 3, 3)
1002
+ T: Translation matrix of shape (N, 3)
1003
+ K: (optional) A calibration matrix of shape (N, 4, 4)
1004
+ If provided, don't need focal_length, principal_point
1005
+ image_size: (height, width) of image size.
1006
+ A tensor of shape (N, 2) or a list/tuple. Required for screen cameras.
1007
+ device: torch.device or string
1008
+ """
1009
+ # The initializer formats all inputs to torch tensors and broadcasts
1010
+ # all the inputs to have the same batch dimension where necessary.
1011
+ kwargs = {"image_size": image_size} if image_size is not None else {}
1012
+ super().__init__(
1013
+ device=device,
1014
+ focal_length=focal_length,
1015
+ principal_point=principal_point,
1016
+ R=R,
1017
+ T=T,
1018
+ K=K,
1019
+ _in_ndc=in_ndc,
1020
+ **kwargs, # pyre-ignore
1021
+ )
1022
+ if image_size is not None:
1023
+ if (self.image_size < 1).any(): # pyre-ignore
1024
+ raise ValueError("Image_size provided has invalid values")
1025
+ else:
1026
+ self.image_size = None
1027
+
1028
+ # When focal length is provided as one value, expand to
1029
+ # create (N, 2) shape tensor
1030
+ if self.focal_length.ndim == 1: # (N,)
1031
+ self.focal_length = self.focal_length[:, None] # (N, 1)
1032
+ self.focal_length = self.focal_length.expand(-1, 2) # (N, 2)
1033
+
1034
+ def get_projection_transform(self, **kwargs) -> Transform3d:
1035
+ """
1036
+ Calculate the projection matrix using the
1037
+ multi-view geometry convention.
1038
+
1039
+ Args:
1040
+ **kwargs: parameters for the projection can be passed in as keyword
1041
+ arguments to override the default values set in __init__.
1042
+
1043
+ Returns:
1044
+ A `Transform3d` object with a batch of `N` projection transforms.
1045
+
1046
+ .. code-block:: python
1047
+
1048
+ fx = focal_length[:, 0]
1049
+ fy = focal_length[:, 1]
1050
+ px = principal_point[:, 0]
1051
+ py = principal_point[:, 1]
1052
+
1053
+ K = [
1054
+ [fx, 0, px, 0],
1055
+ [0, fy, py, 0],
1056
+ [0, 0, 0, 1],
1057
+ [0, 0, 1, 0],
1058
+ ]
1059
+ """
1060
+ K = kwargs.get("K", self.K)
1061
+ if K is not None:
1062
+ if K.shape != (self._N, 4, 4):
1063
+ msg = "Expected K to have shape of (%r, 4, 4)"
1064
+ raise ValueError(msg % (self._N))
1065
+ else:
1066
+ K = _get_sfm_calibration_matrix(
1067
+ self._N,
1068
+ self.device,
1069
+ kwargs.get("focal_length", self.focal_length),
1070
+ kwargs.get("principal_point", self.principal_point),
1071
+ orthographic=False,
1072
+ )
1073
+
1074
+ transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
1075
+ return transform
1076
+
1077
+ def unproject_points(
1078
+ self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs
1079
+ ) -> torch.Tensor:
1080
+ """
1081
+ Args:
1082
+ from_ndc: If `False` (default), assumes xy part of input is in
1083
+ NDC space if self.in_ndc(), otherwise in screen space. If
1084
+ `True`, assumes xy is in NDC space even if the camera
1085
+ is defined in screen space.
1086
+ """
1087
+ if world_coordinates:
1088
+ to_camera_transform = self.get_full_projection_transform(**kwargs)
1089
+ else:
1090
+ to_camera_transform = self.get_projection_transform(**kwargs)
1091
+ if from_ndc:
1092
+ to_camera_transform = to_camera_transform.compose(self.get_ndc_camera_transform())
1093
+
1094
+ unprojection_transform = to_camera_transform.inverse()
1095
+ xy_inv_depth = torch.cat((xy_depth[..., :2], 1.0 / xy_depth[..., 2:3]), dim=-1) # type: ignore
1096
+ return unprojection_transform.transform_points(xy_inv_depth)
1097
+
1098
+ def get_principal_point(self, **kwargs) -> torch.Tensor:
1099
+ """
1100
+ Return the camera's principal point
1101
+
1102
+ Args:
1103
+ **kwargs: parameters for the camera extrinsics can be passed in
1104
+ as keyword arguments to override the default values
1105
+ set in __init__.
1106
+ """
1107
+ proj_mat = self.get_projection_transform(**kwargs).get_matrix()
1108
+ return proj_mat[:, 2, :2]
1109
+
1110
+ def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
1111
+ """
1112
+ Returns the transform from camera projection space (screen or NDC) to NDC space.
1113
+ If the camera is defined already in NDC space, the transform is identity.
1114
+ For cameras defined in screen space, we adjust the principal point computation
1115
+ which is defined in the image space (commonly) and scale the points to NDC space.
1116
+
1117
+ This transform leaves the depth unchanged.
1118
+
1119
+ Important: This transforms assumes PyTorch3D conventions for the input points,
1120
+ i.e. +X left, +Y up.
1121
+ """
1122
+ if self.in_ndc():
1123
+ ndc_transform = Transform3d(device=self.device, dtype=torch.float32)
1124
+ else:
1125
+ # when cameras are defined in screen/image space, the principal point is
1126
+ # provided in the (+X right, +Y down), aka image, coordinate system.
1127
+ # Since input points are defined in the PyTorch3D system (+X left, +Y up),
1128
+ # we need to adjust for the principal point transform.
1129
+ pr_point_fix = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
1130
+ pr_point_fix[:, 0, 0] = 1.0
1131
+ pr_point_fix[:, 1, 1] = 1.0
1132
+ pr_point_fix[:, 2, 2] = 1.0
1133
+ pr_point_fix[:, 3, 3] = 1.0
1134
+ pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs)
1135
+ pr_point_fix_transform = Transform3d(matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device)
1136
+ image_size = kwargs.get("image_size", self.get_image_size())
1137
+ screen_to_ndc_transform = get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
1138
+ ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform)
1139
+
1140
+ return ndc_transform
1141
+
1142
+ def is_perspective(self):
1143
+ return True
1144
+
1145
+ def in_ndc(self):
1146
+ return self._in_ndc
1147
+
1148
+
1149
+ def SfMOrthographicCameras(
1150
+ focal_length: _FocalLengthType = 1.0,
1151
+ principal_point=((0.0, 0.0),),
1152
+ R: torch.Tensor = _R,
1153
+ T: torch.Tensor = _T,
1154
+ device: Device = "cpu",
1155
+ ) -> "OrthographicCameras":
1156
+ """
1157
+ SfMOrthographicCameras has been DEPRECATED. Use OrthographicCameras instead.
1158
+ Preserving SfMOrthographicCameras for backward compatibility.
1159
+ """
1160
+
1161
+ warnings.warn(
1162
+ """SfMOrthographicCameras is deprecated,
1163
+ Use OrthographicCameras instead.
1164
+ SfMOrthographicCameras will be removed in future releases.""",
1165
+ PendingDeprecationWarning,
1166
+ )
1167
+
1168
+ return OrthographicCameras(focal_length=focal_length, principal_point=principal_point, R=R, T=T, device=device)
1169
+
1170
+
1171
+ class OrthographicCameras(CamerasBase):
1172
+ """
1173
+ A class which stores a batch of parameters to generate a batch of
1174
+ transformation matrices using the multi-view geometry convention for
1175
+ orthographic camera.
1176
+
1177
+ Parameters for this camera are specified in NDC if `in_ndc` is set to True.
1178
+ If parameters are specified in screen space, `in_ndc` must be set to False.
1179
+ """
1180
+
1181
+ # For __getitem__
1182
+ _FIELDS = ("K", "R", "T", "focal_length", "principal_point", "_in_ndc", "image_size")
1183
+
1184
+ _SHARED_FIELDS = ("_in_ndc",)
1185
+
1186
+ def __init__(
1187
+ self,
1188
+ focal_length: _FocalLengthType = 1.0,
1189
+ principal_point=((0.0, 0.0),),
1190
+ R: torch.Tensor = _R,
1191
+ T: torch.Tensor = _T,
1192
+ K: Optional[torch.Tensor] = None,
1193
+ device: Device = "cpu",
1194
+ in_ndc: bool = True,
1195
+ image_size: Optional[Union[List, Tuple, torch.Tensor]] = None,
1196
+ ) -> None:
1197
+ """
1198
+
1199
+ Args:
1200
+ focal_length: Focal length of the camera in world units.
1201
+ A tensor of shape (N, 1) or (N, 2) for
1202
+ square and non-square pixels respectively.
1203
+ principal_point: xy coordinates of the center of
1204
+ the principal point of the camera in pixels.
1205
+ A tensor of shape (N, 2).
1206
+ in_ndc: True if camera parameters are specified in NDC.
1207
+ If False, then camera parameters are in screen space.
1208
+ R: Rotation matrix of shape (N, 3, 3)
1209
+ T: Translation matrix of shape (N, 3)
1210
+ K: (optional) A calibration matrix of shape (N, 4, 4)
1211
+ If provided, don't need focal_length, principal_point, image_size
1212
+ image_size: (height, width) of image size.
1213
+ A tensor of shape (N, 2) or list/tuple. Required for screen cameras.
1214
+ device: torch.device or string
1215
+ """
1216
+ # The initializer formats all inputs to torch tensors and broadcasts
1217
+ # all the inputs to have the same batch dimension where necessary.
1218
+ kwargs = {"image_size": image_size} if image_size is not None else {}
1219
+ super().__init__(
1220
+ device=device,
1221
+ focal_length=focal_length,
1222
+ principal_point=principal_point,
1223
+ R=R,
1224
+ T=T,
1225
+ K=K,
1226
+ _in_ndc=in_ndc,
1227
+ **kwargs, # pyre-ignore
1228
+ )
1229
+ if image_size is not None:
1230
+ if (self.image_size < 1).any(): # pyre-ignore
1231
+ raise ValueError("Image_size provided has invalid values")
1232
+ else:
1233
+ self.image_size = None
1234
+
1235
+ # When focal length is provided as one value, expand to
1236
+ # create (N, 2) shape tensor
1237
+ if self.focal_length.ndim == 1: # (N,)
1238
+ self.focal_length = self.focal_length[:, None] # (N, 1)
1239
+ self.focal_length = self.focal_length.expand(-1, 2) # (N, 2)
1240
+
1241
+ def get_projection_transform(self, **kwargs) -> Transform3d:
1242
+ """
1243
+ Calculate the projection matrix using
1244
+ the multi-view geometry convention.
1245
+
1246
+ Args:
1247
+ **kwargs: parameters for the projection can be passed in as keyword
1248
+ arguments to override the default values set in __init__.
1249
+
1250
+ Returns:
1251
+ A `Transform3d` object with a batch of `N` projection transforms.
1252
+
1253
+ .. code-block:: python
1254
+
1255
+ fx = focal_length[:,0]
1256
+ fy = focal_length[:,1]
1257
+ px = principal_point[:,0]
1258
+ py = principal_point[:,1]
1259
+
1260
+ K = [
1261
+ [fx, 0, 0, px],
1262
+ [0, fy, 0, py],
1263
+ [0, 0, 1, 0],
1264
+ [0, 0, 0, 1],
1265
+ ]
1266
+ """
1267
+ K = kwargs.get("K", self.K)
1268
+ if K is not None:
1269
+ if K.shape != (self._N, 4, 4):
1270
+ msg = "Expected K to have shape of (%r, 4, 4)"
1271
+ raise ValueError(msg % (self._N))
1272
+ else:
1273
+ K = _get_sfm_calibration_matrix(
1274
+ self._N,
1275
+ self.device,
1276
+ kwargs.get("focal_length", self.focal_length),
1277
+ kwargs.get("principal_point", self.principal_point),
1278
+ orthographic=True,
1279
+ )
1280
+
1281
+ transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=self.device)
1282
+ return transform
1283
+
1284
+ def unproject_points(
1285
+ self, xy_depth: torch.Tensor, world_coordinates: bool = True, from_ndc: bool = False, **kwargs
1286
+ ) -> torch.Tensor:
1287
+ """
1288
+ Args:
1289
+ from_ndc: If `False` (default), assumes xy part of input is in
1290
+ NDC space if self.in_ndc(), otherwise in screen space. If
1291
+ `True`, assumes xy is in NDC space even if the camera
1292
+ is defined in screen space.
1293
+ """
1294
+ if world_coordinates:
1295
+ to_camera_transform = self.get_full_projection_transform(**kwargs)
1296
+ else:
1297
+ to_camera_transform = self.get_projection_transform(**kwargs)
1298
+ if from_ndc:
1299
+ to_camera_transform = to_camera_transform.compose(self.get_ndc_camera_transform())
1300
+
1301
+ unprojection_transform = to_camera_transform.inverse()
1302
+ return unprojection_transform.transform_points(xy_depth)
1303
+
1304
+ def get_principal_point(self, **kwargs) -> torch.Tensor:
1305
+ """
1306
+ Return the camera's principal point
1307
+
1308
+ Args:
1309
+ **kwargs: parameters for the camera extrinsics can be passed in
1310
+ as keyword arguments to override the default values
1311
+ set in __init__.
1312
+ """
1313
+ proj_mat = self.get_projection_transform(**kwargs).get_matrix()
1314
+ return proj_mat[:, 3, :2]
1315
+
1316
+ def get_ndc_camera_transform(self, **kwargs) -> Transform3d:
1317
+ """
1318
+ Returns the transform from camera projection space (screen or NDC) to NDC space.
1319
+ If the camera is defined already in NDC space, the transform is identity.
1320
+ For cameras defined in screen space, we adjust the principal point computation
1321
+ which is defined in the image space (commonly) and scale the points to NDC space.
1322
+
1323
+ Important: This transforms assumes PyTorch3D conventions for the input points,
1324
+ i.e. +X left, +Y up.
1325
+ """
1326
+ if self.in_ndc():
1327
+ ndc_transform = Transform3d(device=self.device, dtype=torch.float32)
1328
+ else:
1329
+ # when cameras are defined in screen/image space, the principal point is
1330
+ # provided in the (+X right, +Y down), aka image, coordinate system.
1331
+ # Since input points are defined in the PyTorch3D system (+X left, +Y up),
1332
+ # we need to adjust for the principal point transform.
1333
+ pr_point_fix = torch.zeros((self._N, 4, 4), device=self.device, dtype=torch.float32)
1334
+ pr_point_fix[:, 0, 0] = 1.0
1335
+ pr_point_fix[:, 1, 1] = 1.0
1336
+ pr_point_fix[:, 2, 2] = 1.0
1337
+ pr_point_fix[:, 3, 3] = 1.0
1338
+ pr_point_fix[:, :2, 3] = -2.0 * self.get_principal_point(**kwargs)
1339
+ pr_point_fix_transform = Transform3d(matrix=pr_point_fix.transpose(1, 2).contiguous(), device=self.device)
1340
+ image_size = kwargs.get("image_size", self.get_image_size())
1341
+ screen_to_ndc_transform = get_screen_to_ndc_transform(self, with_xyflip=False, image_size=image_size)
1342
+ ndc_transform = pr_point_fix_transform.compose(screen_to_ndc_transform)
1343
+
1344
+ return ndc_transform
1345
+
1346
+ def is_perspective(self):
1347
+ return False
1348
+
1349
+ def in_ndc(self):
1350
+ return self._in_ndc
1351
+
1352
+
1353
+ ################################################
1354
+ # Helper functions for cameras #
1355
+ ################################################
1356
+
1357
+
1358
+ def _get_sfm_calibration_matrix(
1359
+ N: int, device: Device, focal_length, principal_point, orthographic: bool = False
1360
+ ) -> torch.Tensor:
1361
+ """
1362
+ Returns a calibration matrix of a perspective/orthographic camera.
1363
+
1364
+ Args:
1365
+ N: Number of cameras.
1366
+ focal_length: Focal length of the camera.
1367
+ principal_point: xy coordinates of the center of
1368
+ the principal point of the camera in pixels.
1369
+ orthographic: Boolean specifying if the camera is orthographic or not
1370
+
1371
+ The calibration matrix `K` is set up as follows:
1372
+
1373
+ .. code-block:: python
1374
+
1375
+ fx = focal_length[:,0]
1376
+ fy = focal_length[:,1]
1377
+ px = principal_point[:,0]
1378
+ py = principal_point[:,1]
1379
+
1380
+ for orthographic==True:
1381
+ K = [
1382
+ [fx, 0, 0, px],
1383
+ [0, fy, 0, py],
1384
+ [0, 0, 1, 0],
1385
+ [0, 0, 0, 1],
1386
+ ]
1387
+ else:
1388
+ K = [
1389
+ [fx, 0, px, 0],
1390
+ [0, fy, py, 0],
1391
+ [0, 0, 0, 1],
1392
+ [0, 0, 1, 0],
1393
+ ]
1394
+
1395
+ Returns:
1396
+ A calibration matrix `K` of the SfM-conventioned camera
1397
+ of shape (N, 4, 4).
1398
+ """
1399
+
1400
+ if not torch.is_tensor(focal_length):
1401
+ focal_length = torch.tensor(focal_length, device=device)
1402
+
1403
+ if focal_length.ndim in (0, 1) or focal_length.shape[1] == 1:
1404
+ fx = fy = focal_length
1405
+ else:
1406
+ fx, fy = focal_length.unbind(1)
1407
+
1408
+ if not torch.is_tensor(principal_point):
1409
+ principal_point = torch.tensor(principal_point, device=device)
1410
+
1411
+ px, py = principal_point.unbind(1)
1412
+
1413
+ K = fx.new_zeros(N, 4, 4)
1414
+ K[:, 0, 0] = fx
1415
+ K[:, 1, 1] = fy
1416
+ if orthographic:
1417
+ K[:, 0, 3] = px
1418
+ K[:, 1, 3] = py
1419
+ K[:, 2, 2] = 1.0
1420
+ K[:, 3, 3] = 1.0
1421
+ else:
1422
+ K[:, 0, 2] = px
1423
+ K[:, 1, 2] = py
1424
+ K[:, 3, 2] = 1.0
1425
+ K[:, 2, 3] = 1.0
1426
+
1427
+ return K
1428
+
1429
+
1430
+ ################################################
1431
+ # Helper functions for world to view transforms
1432
+ ################################################
1433
+
1434
+
1435
+ def get_world_to_view_transform(R: torch.Tensor = _R, T: torch.Tensor = _T) -> Transform3d:
1436
+ """
1437
+ This function returns a Transform3d representing the transformation
1438
+ matrix to go from world space to view space by applying a rotation and
1439
+ a translation.
1440
+
1441
+ PyTorch3D uses the same convention as Hartley & Zisserman.
1442
+ I.e., for camera extrinsic parameters R (rotation) and T (translation),
1443
+ we map a 3D point `X_world` in world coordinates to
1444
+ a point `X_cam` in camera coordinates with:
1445
+ `X_cam = X_world R + T`
1446
+
1447
+ Args:
1448
+ R: (N, 3, 3) matrix representing the rotation.
1449
+ T: (N, 3) matrix representing the translation.
1450
+
1451
+ Returns:
1452
+ a Transform3d object which represents the composed RT transformation.
1453
+
1454
+ """
1455
+ # TODO: also support the case where RT is specified as one matrix
1456
+ # of shape (N, 4, 4).
1457
+
1458
+ if T.shape[0] != R.shape[0]:
1459
+ msg = "Expected R, T to have the same batch dimension; got %r, %r"
1460
+ raise ValueError(msg % (R.shape[0], T.shape[0]))
1461
+ if T.dim() != 2 or T.shape[1:] != (3,):
1462
+ msg = "Expected T to have shape (N, 3); got %r"
1463
+ raise ValueError(msg % repr(T.shape))
1464
+ if R.dim() != 3 or R.shape[1:] != (3, 3):
1465
+ msg = "Expected R to have shape (N, 3, 3); got %r"
1466
+ raise ValueError(msg % repr(R.shape))
1467
+
1468
+ # Create a Transform3d object
1469
+ T_ = Translate(T, device=T.device)
1470
+ R_ = Rotate(R, device=R.device)
1471
+ return R_.compose(T_)
1472
+
1473
+
1474
+ def camera_position_from_spherical_angles(
1475
+ distance: float, elevation: float, azimuth: float, degrees: bool = True, device: Device = "cpu"
1476
+ ) -> torch.Tensor:
1477
+ """
1478
+ Calculate the location of the camera based on the distance away from
1479
+ the target point, the elevation and azimuth angles.
1480
+
1481
+ Args:
1482
+ distance: distance of the camera from the object.
1483
+ elevation, azimuth: angles.
1484
+ The inputs distance, elevation and azimuth can be one of the following
1485
+ - Python scalar
1486
+ - Torch scalar
1487
+ - Torch tensor of shape (N) or (1)
1488
+ degrees: bool, whether the angles are specified in degrees or radians.
1489
+ device: str or torch.device, device for new tensors to be placed on.
1490
+
1491
+ The vectors are broadcast against each other so they all have shape (N, 1).
1492
+
1493
+ Returns:
1494
+ camera_position: (N, 3) xyz location of the camera.
1495
+ """
1496
+ broadcasted_args = convert_to_tensors_and_broadcast(distance, elevation, azimuth, device=device)
1497
+ dist, elev, azim = broadcasted_args
1498
+ if degrees:
1499
+ elev = math.pi / 180.0 * elev
1500
+ azim = math.pi / 180.0 * azim
1501
+ x = dist * torch.cos(elev) * torch.sin(azim)
1502
+ y = dist * torch.sin(elev)
1503
+ z = dist * torch.cos(elev) * torch.cos(azim)
1504
+ camera_position = torch.stack([x, y, z], dim=1)
1505
+ if camera_position.dim() == 0:
1506
+ camera_position = camera_position.view(1, -1) # add batch dim.
1507
+ return camera_position.view(-1, 3)
1508
+
1509
+
1510
+ def look_at_rotation(camera_position, at=((0, 0, 0),), up=((0, 1, 0),), device: Device = "cpu") -> torch.Tensor:
1511
+ """
1512
+ This function takes a vector 'camera_position' which specifies the location
1513
+ of the camera in world coordinates and two vectors `at` and `up` which
1514
+ indicate the position of the object and the up directions of the world
1515
+ coordinate system respectively. The object is assumed to be centered at
1516
+ the origin.
1517
+
1518
+ The output is a rotation matrix representing the transformation
1519
+ from world coordinates -> view coordinates.
1520
+
1521
+ Args:
1522
+ camera_position: position of the camera in world coordinates
1523
+ at: position of the object in world coordinates
1524
+ up: vector specifying the up direction in the world coordinate frame.
1525
+
1526
+ The inputs camera_position, at and up can each be a
1527
+ - 3 element tuple/list
1528
+ - torch tensor of shape (1, 3)
1529
+ - torch tensor of shape (N, 3)
1530
+
1531
+ The vectors are broadcast against each other so they all have shape (N, 3).
1532
+
1533
+ Returns:
1534
+ R: (N, 3, 3) batched rotation matrices
1535
+ """
1536
+ # Format input and broadcast
1537
+ broadcasted_args = convert_to_tensors_and_broadcast(camera_position, at, up, device=device)
1538
+ camera_position, at, up = broadcasted_args
1539
+ for t, n in zip([camera_position, at, up], ["camera_position", "at", "up"]):
1540
+ if t.shape[-1] != 3:
1541
+ msg = "Expected arg %s to have shape (N, 3); got %r"
1542
+ raise ValueError(msg % (n, t.shape))
1543
+ z_axis = F.normalize(at - camera_position, eps=1e-5)
1544
+ x_axis = F.normalize(torch.cross(up, z_axis, dim=1), eps=1e-5)
1545
+ y_axis = F.normalize(torch.cross(z_axis, x_axis, dim=1), eps=1e-5)
1546
+ is_close = torch.isclose(x_axis, torch.tensor(0.0), atol=5e-3).all(dim=1, keepdim=True)
1547
+ if is_close.any():
1548
+ replacement = F.normalize(torch.cross(y_axis, z_axis, dim=1), eps=1e-5)
1549
+ x_axis = torch.where(is_close, replacement, x_axis)
1550
+ R = torch.cat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), dim=1)
1551
+ return R.transpose(1, 2)
1552
+
1553
+
1554
+ def look_at_view_transform(
1555
+ dist: _BatchFloatType = 1.0,
1556
+ elev: _BatchFloatType = 0.0,
1557
+ azim: _BatchFloatType = 0.0,
1558
+ degrees: bool = True,
1559
+ eye: Optional[Union[Sequence, torch.Tensor]] = None,
1560
+ at=((0, 0, 0),), # (1, 3)
1561
+ up=((0, 1, 0),), # (1, 3)
1562
+ device: Device = "cpu",
1563
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
1564
+ """
1565
+ This function returns a rotation and translation matrix
1566
+ to apply the 'Look At' transformation from world -> view coordinates [0].
1567
+
1568
+ Args:
1569
+ dist: distance of the camera from the object
1570
+ elev: angle in degrees or radians. This is the angle between the
1571
+ vector from the object to the camera, and the horizontal plane y = 0 (xz-plane).
1572
+ azim: angle in degrees or radians. The vector from the object to
1573
+ the camera is projected onto a horizontal plane y = 0.
1574
+ azim is the angle between the projected vector and a
1575
+ reference vector at (0, 0, 1) on the reference plane (the horizontal plane).
1576
+ dist, elev and azim can be of shape (1), (N).
1577
+ degrees: boolean flag to indicate if the elevation and azimuth
1578
+ angles are specified in degrees or radians.
1579
+ eye: the position of the camera(s) in world coordinates. If eye is not
1580
+ None, it will override the camera position derived from dist, elev, azim.
1581
+ up: the direction of the x axis in the world coordinate system.
1582
+ at: the position of the object(s) in world coordinates.
1583
+ eye, up and at can be of shape (1, 3) or (N, 3).
1584
+
1585
+ Returns:
1586
+ 2-element tuple containing
1587
+
1588
+ - **R**: the rotation to apply to the points to align with the camera.
1589
+ - **T**: the translation to apply to the points to align with the camera.
1590
+
1591
+ References:
1592
+ [0] https://www.scratchapixel.com
1593
+ """
1594
+
1595
+ if eye is not None:
1596
+ broadcasted_args = convert_to_tensors_and_broadcast(eye, at, up, device=device)
1597
+ eye, at, up = broadcasted_args
1598
+ C = eye
1599
+ else:
1600
+ broadcasted_args = convert_to_tensors_and_broadcast(dist, elev, azim, at, up, device=device)
1601
+ dist, elev, azim, at, up = broadcasted_args
1602
+ C = camera_position_from_spherical_angles(dist, elev, azim, degrees=degrees, device=device) + at
1603
+
1604
+ R = look_at_rotation(C, at, up, device=device)
1605
+ T = -torch.bmm(R.transpose(1, 2), C[:, :, None])[:, :, 0]
1606
+ return R, T
1607
+
1608
+
1609
+ def get_ndc_to_screen_transform(
1610
+ cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None
1611
+ ) -> Transform3d:
1612
+ """
1613
+ PyTorch3D NDC to screen conversion.
1614
+ Conversion from PyTorch3D's NDC space (+X left, +Y up) to screen/image space
1615
+ (+X right, +Y down, origin top left).
1616
+
1617
+ Args:
1618
+ cameras
1619
+ with_xyflip: flips x- and y-axis if set to True.
1620
+ Optional kwargs:
1621
+ image_size: ((height, width),) specifying the height, width
1622
+ of the image. If not provided, it reads it from cameras.
1623
+
1624
+ We represent the NDC to screen conversion as a Transform3d
1625
+ with projection matrix
1626
+
1627
+ K = [
1628
+ [s, 0, 0, cx],
1629
+ [0, s, 0, cy],
1630
+ [0, 0, 1, 0],
1631
+ [0, 0, 0, 1],
1632
+ ]
1633
+
1634
+ """
1635
+ # We require the image size, which is necessary for the transform
1636
+ if image_size is None:
1637
+ msg = "For NDC to screen conversion, image_size=(height, width) needs to be specified."
1638
+ raise ValueError(msg)
1639
+
1640
+ K = torch.zeros((cameras._N, 4, 4), device=cameras.device, dtype=torch.float32)
1641
+ if not torch.is_tensor(image_size):
1642
+ image_size = torch.tensor(image_size, device=cameras.device)
1643
+ # pyre-fixme[16]: Item `List` of `Union[List[typing.Any], Tensor, Tuple[Any,
1644
+ # ...]]` has no attribute `view`.
1645
+ image_size = image_size.view(-1, 2) # of shape (1 or B)x2
1646
+ height, width = image_size.unbind(1)
1647
+
1648
+ # For non square images, we scale the points such that smallest side
1649
+ # has range [-1, 1] and the largest side has range [-u, u], with u > 1.
1650
+ # This convention is consistent with the PyTorch3D renderer
1651
+ scale = (image_size.min(dim=1).values - 0.0) / 2.0
1652
+
1653
+ K[:, 0, 0] = scale
1654
+ K[:, 1, 1] = scale
1655
+ K[:, 0, 3] = -1.0 * (width - 0.0) / 2.0
1656
+ K[:, 1, 3] = -1.0 * (height - 0.0) / 2.0
1657
+ K[:, 2, 2] = 1.0
1658
+ K[:, 3, 3] = 1.0
1659
+
1660
+ # Transpose the projection matrix as PyTorch3D transforms use row vectors.
1661
+ transform = Transform3d(matrix=K.transpose(1, 2).contiguous(), device=cameras.device)
1662
+
1663
+ if with_xyflip:
1664
+ # flip x, y axis
1665
+ xyflip = torch.eye(4, device=cameras.device, dtype=torch.float32)
1666
+ xyflip[0, 0] = -1.0
1667
+ xyflip[1, 1] = -1.0
1668
+ xyflip = xyflip.view(1, 4, 4).expand(cameras._N, -1, -1)
1669
+ xyflip_transform = Transform3d(matrix=xyflip.transpose(1, 2).contiguous(), device=cameras.device)
1670
+ transform = transform.compose(xyflip_transform)
1671
+ return transform
1672
+
1673
+
1674
+ def get_screen_to_ndc_transform(
1675
+ cameras, with_xyflip: bool = False, image_size: Optional[Union[List, Tuple, torch.Tensor]] = None
1676
+ ) -> Transform3d:
1677
+ """
1678
+ Screen to PyTorch3D NDC conversion.
1679
+ Conversion from screen/image space (+X right, +Y down, origin top left)
1680
+ to PyTorch3D's NDC space (+X left, +Y up).
1681
+
1682
+ Args:
1683
+ cameras
1684
+ with_xyflip: flips x- and y-axis if set to True.
1685
+ Optional kwargs:
1686
+ image_size: ((height, width),) specifying the height, width
1687
+ of the image. If not provided, it reads it from cameras.
1688
+
1689
+ We represent the screen to NDC conversion as a Transform3d
1690
+ with projection matrix
1691
+
1692
+ K = [
1693
+ [1/s, 0, 0, cx/s],
1694
+ [ 0, 1/s, 0, cy/s],
1695
+ [ 0, 0, 1, 0],
1696
+ [ 0, 0, 0, 1],
1697
+ ]
1698
+
1699
+ """
1700
+ transform = get_ndc_to_screen_transform(cameras, with_xyflip=with_xyflip, image_size=image_size).inverse()
1701
+ return transform
1702
+
1703
+
1704
+ def try_get_projection_transform(cameras: CamerasBase, cameras_kwargs: Dict[str, Any]) -> Optional[Transform3d]:
1705
+ """
1706
+ Try block to get projection transform from cameras and cameras_kwargs.
1707
+
1708
+ Args:
1709
+ cameras: cameras instance, can be linear cameras or nonliear cameras
1710
+ cameras_kwargs: camera parameters to be passed to cameras
1711
+
1712
+ Returns:
1713
+ If the camera implemented projection_transform, return the
1714
+ projection transform; Otherwise, return None
1715
+ """
1716
+
1717
+ transform = None
1718
+ try:
1719
+ transform = cameras.get_projection_transform(**cameras_kwargs)
1720
+ except NotImplementedError:
1721
+ pass
1722
+ return transform