Spaces:
Running
Running
File size: 27,259 Bytes
558b857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
import torch
import tensorflow as tf
from tf_keras import models, layers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, TFAutoModelForQuestionAnswering
import gradio as gr
import re
import pandas as pd
import io
# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_TOKEN_LENGTH = 512 # Adjust based on your model's limits
def truncate_text(text, tokenizer, max_length=MAX_TOKEN_LENGTH):
"""Truncate text to max token length"""
tokens = tokenizer.encode(text, truncation=False)
if len(tokens) > max_length:
tokens = tokens[:max_length-1] + [tokenizer.sep_token_id]
return tokenizer.decode(tokens, skip_special_tokens=True)
return text
def safe_process(func, text, tokenizer):
"""Safely process text with proper error handling"""
try:
truncated_text = truncate_text(text, tokenizer)
return func(truncated_text)
except Exception as e:
error_msg = str(e)
if 'out of memory' in error_msg.lower():
return "Error: Text too long for processing"
elif 'cuda' in error_msg.lower():
return "Error: GPU processing error"
else:
return f"Error: {error_msg}"
# Load the models and tokenizers
qa_model_name = 'salsarra/ConfliBERT-QA'
qa_model = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name)
qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
ner_model_name = 'eventdata-utd/conflibert-named-entity-recognition'
ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_name).to(device)
ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_name)
clf_model_name = 'eventdata-utd/conflibert-binary-classification'
clf_model = AutoModelForSequenceClassification.from_pretrained(clf_model_name).to(device)
clf_tokenizer = AutoTokenizer.from_pretrained(clf_model_name)
multi_clf_model_name = 'eventdata-utd/conflibert-satp-relevant-multilabel'
multi_clf_model = AutoModelForSequenceClassification.from_pretrained(multi_clf_model_name).to(device)
multi_clf_tokenizer = AutoTokenizer.from_pretrained(multi_clf_model_name)
# Define the class names for text classification
class_names = ['Negative', 'Positive']
multi_class_names = ["Armed Assault", "Bombing or Explosion", "Kidnapping", "Other"] # Updated labels
# Define the NER labels and colors
ner_labels = {
'Organisation': 'blue',
'Person': 'red',
'Location': 'green',
'Quantity': 'orange',
'Weapon': 'purple',
'Nationality': 'cyan',
'Temporal': 'magenta',
'DocumentReference': 'brown',
'MilitaryPlatform': 'yellow',
'Money': 'pink'
}
def handle_error_message(e, default_limit=512):
error_message = str(e)
pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)")
match = pattern.search(error_message)
if match:
number_1, number_2 = match.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
pattern_qa = re.compile(r"indices\[0,(\d+)\] = \d+ is not in \[0, (\d+)\)")
match_qa = pattern_qa.search(error_message)
if match_qa:
number_1, number_2 = match_qa.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>"
# Define the functions for each task
def question_answering(context, question):
try:
inputs = qa_tokenizer(question, context, return_tensors='tf', truncation=True)
outputs = qa_model(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = qa_tokenizer.convert_tokens_to_string(qa_tokenizer.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
return f"<span style='color: green; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
def replace_unk(tokens):
return [token.replace('[UNK]', "'") for token in tokens]
def named_entity_recognition(text, output_format='html'):
"""
Process text for named entity recognition.
output_format: 'html' for GUI display, 'csv' for CSV processing
"""
try:
inputs = ner_tokenizer(text, return_tensors='pt', truncation=True)
with torch.no_grad():
outputs = ner_model(**inputs)
ner_results = outputs.logits.argmax(dim=2).squeeze().tolist()
tokens = ner_tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze().tolist())
tokens = replace_unk(tokens)
entities = []
seen_labels = set()
current_entity = []
current_label = None
# Process tokens and group consecutive entities
for i in range(len(tokens)):
token = tokens[i]
label = ner_model.config.id2label[ner_results[i]].split('-')[-1]
# Handle subwords
if token.startswith('##'):
if entities:
if output_format == 'html':
entities[-1][0] += token[2:]
elif current_entity:
current_entity[-1] = current_entity[-1] + token[2:]
else:
# For CSV format, group consecutive tokens of same entity type
if output_format == 'csv':
if label != 'O':
if label == current_label:
current_entity.append(token)
else:
if current_entity:
entities.append([' '.join(current_entity), current_label])
current_entity = [token]
current_label = label
else:
if current_entity:
entities.append([' '.join(current_entity), current_label])
current_entity = []
current_label = None
else:
entities.append([token, label])
if label != 'O':
seen_labels.add(label)
# Don't forget the last entity for CSV format
if output_format == 'csv' and current_entity:
entities.append([' '.join(current_entity), current_label])
if output_format == 'csv':
# Group by entity type
grouped_entities = {}
for token, label in entities:
if label != 'O':
if label not in grouped_entities:
grouped_entities[label] = []
grouped_entities[label].append(token)
# Format the output
result_parts = []
for label, tokens in grouped_entities.items():
unique_tokens = list(dict.fromkeys(tokens)) # Remove duplicates
result_parts.append(f"{label}: {' | '.join(unique_tokens)}")
return ' || '.join(result_parts)
else:
# Original HTML output
highlighted_text = ""
for token, label in entities:
color = ner_labels.get(label, 'black')
if label != 'O':
highlighted_text += f"<span style='color: {color}; font-weight: bold;'>{token}</span> "
else:
highlighted_text += f"{token} "
legend = "<div><strong>NER Tags Found:</strong><ul style='list-style-type: disc; padding-left: 20px;'>"
for label in seen_labels:
color = ner_labels.get(label, 'black')
legend += f"<li style='color: {color}; font-weight: bold;'>{label}</li>"
legend += "</ul></div>"
return f"<div>{highlighted_text}</div>{legend}"
except Exception as e:
return handle_error_message(e)
def text_classification(text):
try:
inputs = clf_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = clf_model(**inputs)
logits = outputs.logits.squeeze().tolist()
predicted_class = torch.argmax(outputs.logits, dim=1).item()
confidence = torch.softmax(outputs.logits, dim=1).max().item() * 100
if predicted_class == 1: # Positive class
result = f"<span style='color: green; font-weight: bold;'>Positive: The text is related to conflict, violence, or politics. (Confidence: {confidence:.2f}%)</span>"
else: # Negative class
result = f"<span style='color: red; font-weight: bold;'>Negative: The text is not related to conflict, violence, or politics. (Confidence: {confidence:.2f}%)</span>"
return result
except Exception as e:
return handle_error_message(e)
def multilabel_classification(text):
try:
inputs = multi_clf_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = multi_clf_model(**inputs)
predicted_classes = torch.sigmoid(outputs.logits).squeeze().tolist()
if len(predicted_classes) != len(multi_class_names):
return f"Error: Number of predicted classes ({len(predicted_classes)}) does not match number of class names ({len(multi_class_names)})."
results = []
for i in range(len(predicted_classes)):
confidence = predicted_classes[i] * 100
if predicted_classes[i] >= 0.5:
results.append(f"<span style='color: green; font-weight: bold;'>{multi_class_names[i]} (Confidence: {confidence:.2f}%)</span>")
else:
results.append(f"<span style='color: red; font-weight: bold;'>{multi_class_names[i]} (Confidence: {confidence:.2f}%)</span>")
return " / ".join(results)
except Exception as e:
return handle_error_message(e)
def clean_html_tags(text):
"""Remove HTML tags and formatting from the output."""
# Remove HTML tags but keep the text content
clean_text = re.sub(r'<[^>]+>', '', text)
# Remove multiple spaces
clean_text = re.sub(r'\s+', ' ', clean_text)
# Remove [CLS] and [SEP] tokens
clean_text = re.sub(r'\[CLS\]|\[SEP\]', '', clean_text)
return clean_text.strip()
def extract_ner_entities(html_output):
"""Extract entities and their types from NER output using a simpler approach."""
# Map colors to entity types
color_to_type = {
'blue': 'Organisation',
'red': 'Person',
'green': 'Location',
'orange': 'Quantity',
'purple': 'Weapon',
'cyan': 'Nationality',
'magenta': 'Temporal',
'brown': 'DocumentReference',
'yellow': 'MilitaryPlatform',
'pink': 'Money'
}
# Find all colored spans
pattern = r"<span style='color: ([^']+)[^>]+>([^<]+)</span>"
matches = re.findall(pattern, html_output)
# Group by entity type
entities = {}
# Process each match
for color, text in matches:
if color in color_to_type:
entity_type = color_to_type[color]
if entity_type not in entities:
entities[entity_type] = []
# Clean and store the text
text = text.strip()
if text and not text.isspace():
entities[entity_type].append(text)
# Join consecutive words for each entity type
result_parts = []
for entity_type, words in entities.items():
# Join consecutive words
phrases = []
current_phrase = []
for word in words:
if word in [',', '/', ':', '-']: # Skip punctuation
continue
if not current_phrase:
current_phrase.append(word)
else:
# If it's a continuation (e.g., part of a date or name)
if word.startswith(':') or word == 'of' or current_phrase[-1].endswith('/'):
current_phrase.append(word)
else:
# If it's a new entity
phrases.append(' '.join(current_phrase))
current_phrase = [word]
if current_phrase:
phrases.append(' '.join(current_phrase))
# Remove duplicates while preserving order
unique_phrases = []
seen = set()
for phrase in phrases:
clean_phrase = phrase.strip()
if clean_phrase and clean_phrase not in seen:
unique_phrases.append(clean_phrase)
seen.add(clean_phrase)
if unique_phrases:
result_parts.append(f"{entity_type}: {' | '.join(unique_phrases)}")
return ' || '.join(result_parts)
def clean_classification_output(html_output):
"""Extract classification results without HTML formatting."""
if "Positive" in html_output:
# Binary classification
match = re.search(r">(Positive|Negative).*?Confidence: ([\d.]+)%", html_output)
if match:
class_name, confidence = match.groups()
return f"{class_name} ({confidence}%)"
else:
# Multilabel classification
results = []
matches = re.finditer(r">([^<]+)\s*\(Confidence:\s*([\d.]+)%\)", html_output)
for match in matches:
class_name, confidence = match.groups()
if float(confidence) >= 50: # Only include classes with confidence >= 50%
results.append(f"{class_name.strip()} ({confidence}%)")
return " | ".join(results) if results else "No classes above 50% confidence"
return "Unknown"
def process_csv_ner(file):
try:
df = pd.read_csv(file.name)
if 'text' not in df.columns:
return "Error: CSV must contain a 'text' column"
entities = []
for text in df['text']:
if pd.isna(text):
entities.append("")
continue
# Use CSV output format
result = named_entity_recognition(str(text), output_format='csv')
entities.append(result)
df['entities'] = entities
output_path = "processed_results.csv"
df.to_csv(output_path, index=False)
return output_path
except Exception as e:
return f"Error processing CSV: {str(e)}"
def process_csv_classification(file, is_multi=False):
try:
df = pd.read_csv(file.name)
if 'text' not in df.columns:
return "Error: CSV must contain a 'text' column"
results = []
for text in df['text']:
if pd.isna(text):
results.append("")
continue
if is_multi:
html_result = multilabel_classification(str(text))
else:
html_result = text_classification(str(text))
results.append(clean_classification_output(html_result))
result_column = 'multilabel_results' if is_multi else 'classification_results'
df[result_column] = results
output_path = "processed_results.csv"
df.to_csv(output_path, index=False)
return output_path
except Exception as e:
return f"Error processing CSV: {str(e)}"
# Define the Gradio interface
def chatbot(task, text=None, context=None, question=None, file=None):
if file is not None: # Handle CSV file input
if task == "Named Entity Recognition":
return process_csv_ner(file)
elif task == "Text Classification":
return process_csv_classification(file, is_multi=False)
elif task == "Multilabel Classification":
return process_csv_classification(file, is_multi=True)
else:
return "CSV processing is not supported for Question Answering task"
# Handle regular text input (previous implementation)
if task == "Question Answering":
if context and question:
return question_answering(context, question)
else:
return "Please provide both context and question for the Question Answering task."
elif task == "Named Entity Recognition":
if text:
return named_entity_recognition(text)
else:
return "Please provide text for the Named Entity Recognition task."
elif task == "Text Classification":
if text:
return text_classification(text)
else:
return "Please provide text for the Text Classification task."
elif task == "Multilabel Classification":
if text:
return multilabel_classification(text)
else:
return "Please provide text for the Multilabel Classification task."
else:
return "Please select a valid task."
css = """
:root {
--primary-color: #2563eb;
--secondary-color: #1e40af;
--accent-color: #3b82f6;
--background-color: #f8fafc;
--card-background: #ffffff;
--text-color: #1e293b;
--border-color: #e2e8f0;
}
body {
background-color: var(--background-color);
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
color: var(--text-color);
}
.gradio-container {
max-width: 1200px !important;
margin: 2rem auto !important;
padding: 0 1rem;
}
.header-container {
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
padding: 2rem 1rem;
margin: -1rem -1rem 2rem -1rem;
border-radius: 1rem;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
}
.header-title-center a {
font-size: 2.5rem !important;
font-weight: 800;
color: white !important;
text-align: center;
display: block;
text-decoration: none;
letter-spacing: -0.025em;
margin-bottom: 0.5rem;
}
.task-container {
background: var(--card-background);
padding: 2rem;
border-radius: 1rem;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
margin-bottom: 2rem;
}
.gr-input, .gr-box {
border: 1px solid var(--border-color) !important;
border-radius: 0.75rem !important;
padding: 1rem !important;
background: var(--card-background) !important;
transition: border-color 0.15s ease;
}
.gr-input:focus, .gr-box:focus {
border-color: var(--accent-color) !important;
outline: none !important;
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important;
}
.gr-button {
background: var(--primary-color) !important;
border: none;
padding: 0.75rem 1.5rem !important;
font-weight: 600 !important;
border-radius: 0.75rem !important;
cursor: pointer;
transition: all 0.15s ease;
}
.gr-button:hover {
background: var(--secondary-color) !important;
transform: translateY(-1px);
}
.gr-button:active {
transform: translateY(0);
}
select.gr-box {
cursor: pointer;
padding-right: 2.5rem !important;
appearance: none;
background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 24 24' stroke='%23475569'%3E%3Cpath stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='M19 9l-7 7-7-7'%3E%3C/path%3E%3C/svg%3E");
background-repeat: no-repeat;
background-position: right 1rem center;
background-size: 1.5em 1.5em;
}
.footer {
text-align: center;
margin-top: 2rem;
padding: 2rem 0;
border-top: 1px solid var(--border-color);
color: #64748b;
}
.footer a {
color: var(--primary-color);
font-weight: 500;
text-decoration: none;
transition: color 0.15s ease;
}
.footer a:hover {
color: var(--secondary-color);
}
/* File upload styles */
.gr-file-drop {
border: 2px dashed var(--border-color) !important;
border-radius: 0.75rem !important;
padding: 2rem !important;
text-align: center;
transition: all 0.15s ease;
}
.gr-file-drop:hover {
border-color: var(--accent-color) !important;
background-color: rgba(59, 130, 246, 0.05) !important;
}
/* Output container */
.output-html {
background: var(--card-background);
padding: 1.5rem;
border-radius: 0.75rem;
box-shadow: 0 1px 3px 0 rgb(0 0 0 / 0.1), 0 1px 2px -1px rgb(0 0 0 / 0.1);
}
/* Labels */
label {
font-weight: 500;
margin-bottom: 0.5rem;
color: #475569;
}
/* Spacing between elements */
.gr-form {
gap: 1.5rem !important;
}
.gr-row {
gap: 1rem !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
with gr.Row(elem_id="header", elem_classes="header-container"):
gr.Markdown("<div class='header-title-center'><a href='https://eventdata.utdallas.edu/conflibert/'>ConfliBERT</a></div>")
with gr.Column(elem_classes="task-container"):
gr.Markdown("<h2 style='font-size: 1.25rem; font-weight: 600; margin-bottom: 1.5rem; color: #0f172a;'>Select a task and provide the necessary inputs:</h2>")
task = gr.Dropdown(
choices=["Question Answering", "Named Entity Recognition", "Text Classification", "Multilabel Classification"],
label="Select Task",
value="Named Entity Recognition"
)
with gr.Row():
text_input = gr.Textbox(
lines=5,
placeholder="Enter the text here...",
label="Text",
elem_classes="input-text"
)
context_input = gr.Textbox(
lines=5,
placeholder="Enter the context here...",
label="Context",
visible=False,
elem_classes="input-text"
)
question_input = gr.Textbox(
lines=2,
placeholder="Enter your question here...",
label="Question",
visible=False,
elem_classes="input-text"
)
with gr.Row():
file_input = gr.File(
label="Or upload a CSV file (must contain a 'text' column)",
file_types=[".csv"],
elem_classes="file-upload"
)
file_output = gr.File(
label="Download processed results",
visible=False,
elem_classes="file-download"
)
with gr.Row():
submit_button = gr.Button(
"Submit",
elem_id="submit-button",
elem_classes="submit-btn"
)
output = gr.HTML(label="Output", elem_classes="output-html")
with gr.Row(elem_classes="footer"):
gr.Markdown("<a href='https://eventdata.utdallas.edu/'>UTD Event Data</a> | <a href='https://www.utdallas.edu/'>University of Texas at Dallas</a>")
gr.Markdown("Developed By: <a href='https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/' target='_blank'>Sultan Alsarra</a> and <a href='http://shreyasmeher.com' target='_blank'>Shreyas Meher</a>")
# Define the update_inputs function
def update_inputs(task_name):
"""Updates the visibility of input components based on the selected task."""
if task_name == "Question Answering":
return [
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
else:
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True)
]
# Define the chatbot_interface function
def chatbot_interface(task, text, context, question, file):
"""Handles both file and text inputs for different tasks."""
if file:
result = chatbot(task, file=file)
if isinstance(result, str) and result.endswith('.csv'):
return gr.update(visible=False), gr.update(value=result, visible=True)
return gr.update(value=result, visible=True), gr.update(visible=False)
else:
result = chatbot(task, text, context, question)
return gr.update(value=result, visible=True), gr.update(visible=False)
# Define the main chatbot function
def chatbot(task, text=None, context=None, question=None, file=None):
"""Main function to process different types of inputs and tasks."""
if file is not None: # Handle CSV file input
if task == "Named Entity Recognition":
return process_csv_ner(file)
elif task == "Text Classification":
return process_csv_classification(file, is_multi=False)
elif task == "Multilabel Classification":
return process_csv_classification(file, is_multi=True)
else:
return "CSV processing is not supported for Question Answering task"
# Handle regular text input
if task == "Question Answering":
if context and question:
return question_answering(context, question)
else:
return "Please provide both context and question for the Question Answering task."
elif task == "Named Entity Recognition":
if text:
return named_entity_recognition(text)
else:
return "Please provide text for the Named Entity Recognition task."
elif task == "Text Classification":
if text:
return text_classification(text)
else:
return "Please provide text for the Text Classification task."
elif task == "Multilabel Classification":
if text:
return multilabel_classification(text)
else:
return "Please provide text for the Multilabel Classification task."
else:
return "Please select a valid task."
# Event handlers
task.change(fn=update_inputs, inputs=task, outputs=[text_input, context_input, question_input, file_input, file_output])
submit_button.click(
fn=chatbot_interface,
inputs=[task, text_input, context_input, question_input, file_input],
outputs=[output, file_output]
)
demo.launch(share=True) |