File size: 5,534 Bytes
5b46ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module to compute TREC evaluation scores."""

import datasets
import pandas as pd
from trectools import TrecEval, TrecQrel, TrecRun

import evaluate


_CITATION = """\
@inproceedings{palotti2019,
 author = {Palotti, Joao and Scells, Harrisen and Zuccon, Guido},
 title = {TrecTools: an open-source Python library for Information Retrieval practitioners involved in TREC-like campaigns},
 series = {SIGIR'19},
 year = {2019},
 location = {Paris, France},
 publisher = {ACM}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
The TREC Eval metric combines a number of information retrieval metrics such as \
precision and nDCG. It is used to score rankings of retrieved documents with reference values."""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates TREC evaluation scores based on a run and qrel.
Args:
    predictions: list containing a single run.
    references: list containing a single qrel.
Returns:
    dict: TREC evaluation scores.
Examples:
    >>> trec = evaluate.load("trec_eval")
    >>> qrel = {
    ...     "query": [0],
    ...     "q0": ["0"],
    ...     "docid": ["doc_1"],
    ...     "rel": [2]
    ... }
    >>> run = {
    ...     "query": [0, 0],
    ...     "q0": ["q0", "q0"],
    ...     "docid": ["doc_2", "doc_1"],
    ...     "rank": [0, 1],
    ...     "score": [1.5, 1.2],
    ...     "system": ["test", "test"]
    ... }
    >>> results = trec.compute(references=[qrel], predictions=[run])
    >>> print(results["P@5"])
    0.2
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class TRECEval(evaluate.EvaluationModule):
    """Compute TREC evaluation scores."""

    def _info(self):
        return evaluate.EvaluationModuleInfo(
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": {
                        "query": datasets.Sequence(datasets.Value("int64")),
                        "q0": datasets.Sequence(datasets.Value("string")),
                        "docid": datasets.Sequence(datasets.Value("string")),
                        "rank": datasets.Sequence(datasets.Value("int64")),
                        "score": datasets.Sequence(datasets.Value("float")),
                        "system": datasets.Sequence(datasets.Value("string")),
                    },
                    "references": {
                        "query": datasets.Sequence(datasets.Value("int64")),
                        "q0": datasets.Sequence(datasets.Value("string")),
                        "docid": datasets.Sequence(datasets.Value("string")),
                        "rel": datasets.Sequence(datasets.Value("int64")),
                    },
                }
            ),
            homepage="https://github.com/joaopalotti/trectools",
        )

    def _compute(self, references, predictions):
        """Returns the TREC evaluation scores."""

        if len(predictions) > 1 or len(references) > 1:
            raise ValueError(
                f"You can only pass one prediction and reference per evaluation. You passed {len(predictions)} prediction(s) and {len(references)} reference(s)."
            )

        df_run = pd.DataFrame(predictions[0])
        df_qrel = pd.DataFrame(references[0])

        trec_run = TrecRun()
        trec_run.filename = "placeholder.file"
        trec_run.run_data = df_run

        trec_qrel = TrecQrel()
        trec_qrel.filename = "placeholder.file"
        trec_qrel.qrels_data = df_qrel

        trec_eval = TrecEval(trec_run, trec_qrel)

        result = {}
        result["runid"] = trec_eval.run.get_runid()
        result["num_ret"] = trec_eval.get_retrieved_documents(per_query=False)
        result["num_rel"] = trec_eval.get_relevant_documents(per_query=False)
        result["num_rel_ret"] = trec_eval.get_relevant_retrieved_documents(per_query=False)
        result["num_q"] = len(trec_eval.run.topics())
        result["map"] = trec_eval.get_map(depth=10000, per_query=False, trec_eval=True)
        result["gm_map"] = trec_eval.get_geometric_map(depth=10000, trec_eval=True)
        result["bpref"] = trec_eval.get_bpref(depth=1000, per_query=False, trec_eval=True)
        result["Rprec"] = trec_eval.get_rprec(depth=1000, per_query=False, trec_eval=True)
        result["recip_rank"] = trec_eval.get_reciprocal_rank(depth=1000, per_query=False, trec_eval=True)

        for v in [5, 10, 15, 20, 30, 100, 200, 500, 1000]:
            result[f"P@{v}"] = trec_eval.get_precision(depth=v, per_query=False, trec_eval=True)
        for v in [5, 10, 15, 20, 30, 100, 200, 500, 1000]:
            result[f"NDCG@{v}"] = trec_eval.get_ndcg(depth=v, per_query=False, trec_eval=True)

        return result