--- title: sMAPE emoji: 🤗 colorFrom: blue colorTo: red sdk: gradio sdk_version: 3.0.2 app_file: app.py pinned: false tags: - evaluate - metric description: >- Symmetric Mean Absolute Percentage Error (sMAPE) is the symmetric mean percentage error difference between the predicted and actual values defined by Chen and Yang (2004). --- # Metric Card for sMAPE ## Metric Description Symmetric Mean Absolute Error (sMAPE) is the symmetric mean of the percentage error of difference between the predicted $x_i$ and actual $y_i$ numeric values: ![image](https://user-images.githubusercontent.com/8100/200009801-ae8be6c8-facf-401b-8df0-3f80a458b9f4.png) ## How to Use At minimum, this metric requires predictions and references as inputs. ```python >>> smape_metric = evaluate.load("smape") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = smape_metric.compute(predictions=predictions, references=references) ``` ### Inputs Mandatory inputs: - `predictions`: numeric array-like of shape (`n_samples,`) or (`n_samples`, `n_outputs`), representing the estimated target values. - `references`: numeric array-like of shape (`n_samples,`) or (`n_samples`, `n_outputs`), representing the ground truth (correct) target values. Optional arguments: - `sample_weight`: numeric array-like of shape (`n_samples,`) representing sample weights. The default is `None`. - `multioutput`: `raw_values`, `uniform_average` or numeric array-like of shape (`n_outputs,`), which defines the aggregation of multiple output values. The default value is `uniform_average`. - `raw_values` returns a full set of errors in case of multioutput input. - `uniform_average` means that the errors of all outputs are averaged with uniform weight. - the array-like value defines weights used to average errors. ### Output Values This metric outputs a dictionary, containing the mean absolute error score, which is of type: - `float`: if multioutput is `uniform_average` or an ndarray of weights, then the weighted average of all output errors is returned. - numeric array-like of shape (`n_outputs,`): if multioutput is `raw_values`, then the score is returned for each output separately. Each sMAPE `float` value ranges from `0.0` to `2.0`, with the best value being 0.0. Output Example(s): ```python {'smape': 0.5} ``` If `multioutput="raw_values"`: ```python {'smape': array([0.5, 1.5 ])} ``` #### Values from Popular Papers ### Examples Example with the `uniform_average` config: ```python >>> smape_metric = evaluate.load("smape") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = smape_metric.compute(predictions=predictions, references=references) >>> print(results) {'smape': 0.5787...} ``` Example with multi-dimensional lists, and the `raw_values` config: ```python >>> smape_metric = evaluate.load("smape", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0.1, 2], [-1, 2], [8, -5]] >>> results = smape_metric.compute(predictions=predictions, references=references) >>> print(results) {'smape': 0.8874...} >>> results = smape_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) {'smape': array([1.3749..., 0.4])} ``` ## Limitations and Bias This metric is called a measure of "percentage error" even though there is no multiplier of 100. The range is between (0, 2) with it being two when the target and prediction are both zero. ## Citation(s) ```bibtex @article{article, author = {Chen, Zhuo and Yang, Yuhong}, year = {2004}, month = {04}, pages = {}, title = {Assessing forecast accuracy measures} } ``` ## Further References - [Symmetric Mean absolute percentage error - Wikipedia](https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error)