eubinecto commited on
Commit
207cddf
·
1 Parent(s): 3646bbf

saving this branch

Browse files
explore/explore_fetch_epie.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from idiomify.fetchers import fetch_epie
3
+
4
+
5
+ def main():
6
+ epie = fetch_epie()
7
+ idioms = set([
8
+ idiom
9
+ for idiom, _, _ in epie
10
+ ])
11
+
12
+ # so, what do you want? you want to build an idiom-masked language modeling?
13
+ for idiom, context, tag in epie:
14
+ print(context)
15
+
16
+ for idx, idiom in enumerate(idioms):
17
+ print(idx, idiom)
18
+
19
+ # isn't it better to just leave the idiom there, and have it guess what meaning it has?
20
+ # in that case, It may be better to use a generative model?
21
+ # but what would happen if you let it... just guess it?
22
+ # the problem with non-masking is that ... you give the model the answer.
23
+ # what you should rather do is... do something like... find similar words.
24
+
25
+
26
+ if __name__ == '__main__':
27
+ main()
explore/explore_fetch_epie_counts.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from idiomify.fetchers import fetch_epie
3
+
4
+
5
+ def main():
6
+ idioms = set([
7
+ idiom
8
+ for idiom, _, _ in fetch_epie()
9
+ ])
10
+ contexts = [
11
+ context
12
+ for _, _, context in fetch_epie()
13
+ ]
14
+ print("Total number of idioms:", len(idioms))
15
+ # This should learn... this - what I need for now is building a datamodule out of this
16
+ print("Total number of contexts:", len(contexts))
17
+
18
+
19
+ if __name__ == '__main__':
20
+ main()
explore/explore_idiom2subwords.py ADDED
File without changes
idiomify/builders.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ all the functions for building tensors are defined here.
3
+ builders must accept device as one of the parameters.
4
+ """
5
+ import torch
6
+ from typing import List, Tuple
7
+ from transformers import BertTokenizer
8
+
9
+
10
+ class TensorBuilder:
11
+
12
+ def __init__(self, tokenizer: BertTokenizer):
13
+ self.tokenizer = tokenizer
14
+
15
+ def __call__(self, *args, **kwargs) -> torch.Tensor:
16
+ raise NotImplementedError
17
+
18
+
19
+ class Idiom2SubwordsBuilder(TensorBuilder):
20
+
21
+ def __call__(self, idioms: List[str], k: int) -> torch.Tensor:
22
+ mask_id = self.tokenizer.mask_token_id
23
+ pad_id = self.tokenizer.pad_token_id
24
+ # temporarily disable single-token status of the idioms
25
+ idioms = [idiom.split(" ") for idiom in idioms]
26
+ encodings = self.tokenizer(text=idioms,
27
+ add_special_tokens=False,
28
+ # should set this to True, as we already have the idioms split.
29
+ is_split_into_words=True,
30
+ padding='max_length',
31
+ max_length=k, # set to k
32
+ return_tensors="pt")
33
+ input_ids = encodings['input_ids']
34
+ input_ids[input_ids == pad_id] = mask_id # replace them with masks
35
+ return input_ids
36
+
37
+
38
+ class Idiom2DefBuilder(TensorBuilder):
39
+
40
+ def __call__(self, idiom2def: List[Tuple[str, str]], k: int) -> torch.Tensor:
41
+ defs = [definition for _, definition in idiom2def]
42
+ lefts = [" ".join(["[MASK]"] * k)] * len(defs)
43
+ encodings = self.tokenizer(text=lefts,
44
+ text_pair=defs,
45
+ return_tensors="pt",
46
+ add_special_tokens=True,
47
+ truncation=True,
48
+ padding=True,
49
+ verbose=True)
50
+ input_ids: torch.Tensor = encodings['input_ids']
51
+ cls_id: int = self.tokenizer.cls_token_id
52
+ sep_id: int = self.tokenizer.sep_token_id
53
+ mask_id: int = self.tokenizer.mask_token_id
54
+ wisdom_mask = torch.where(input_ids == mask_id, 1, 0)
55
+ desc_mask = torch.where(((input_ids != cls_id) & (input_ids != sep_id) & (input_ids != mask_id)), 1, 0)
56
+ return torch.stack([input_ids,
57
+ encodings['token_type_ids'],
58
+ encodings['attention_mask'],
59
+ wisdom_mask,
60
+ desc_mask], dim=1)
61
+
62
+
63
+ class Idiom2ContextBuilder(TensorBuilder):
64
+
65
+ def __call__(self, idiom2context: List[Tuple[str, str]]):
66
+ contexts = [context for _, context in idiom2context]
67
+ encodings = self.tokenizer(text=contexts,
68
+ return_tensors="pt",
69
+ add_special_tokens=True,
70
+ truncation=True,
71
+ padding=True,
72
+ verbose=True)
73
+ return torch.stack([encodings['input_ids'],
74
+ encodings['token_type_ids'],
75
+ encodings['attention_mask']], dim=1)
76
+
77
+
78
+ class TargetsBuilder(TensorBuilder):
79
+
80
+ def __call__(self, idiom2sent: List[Tuple[str, str]], idioms: List[str]) -> torch.Tensor:
81
+ return torch.LongTensor([
82
+ idioms.index(idiom)
83
+ for idiom, _ in idiom2sent
84
+ ])
idiomify/datamodules.py CHANGED
@@ -2,8 +2,8 @@ import torch
2
  from typing import Tuple, Optional, List
3
  from torch.utils.data import Dataset, DataLoader
4
  from pytorch_lightning import LightningDataModule
5
- from idiomify.fetchers import fetch_idiom2def
6
- from idiomify import tensors as T
7
  from transformers import BertTokenizer
8
 
9
 
@@ -30,7 +30,7 @@ class IdiomifyDataset(Dataset):
30
  return self.X[idx], self.y[idx]
31
 
32
 
33
- class IdiomifyDataModule(LightningDataModule):
34
 
35
  # boilerplate - just ignore these
36
  def test_dataloader(self):
@@ -66,10 +66,50 @@ class IdiomifyDataModule(LightningDataModule):
66
  """
67
  # --- set up the builders --- #
68
  # build the datasets
69
- X = T.inputs(self.idiom2def, self.tokenizer, self.config['k'])
70
- y = T.targets(self.idiom2def, self.idioms)
71
  self.dataset = IdiomifyDataset(X, y)
72
 
73
  def train_dataloader(self) -> DataLoader:
74
  return DataLoader(self.dataset, batch_size=self.config['batch_size'],
75
  shuffle=self.config['shuffle'], num_workers=self.config['num_workers'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from typing import Tuple, Optional, List
3
  from torch.utils.data import Dataset, DataLoader
4
  from pytorch_lightning import LightningDataModule
5
+ from idiomify.fetchers import fetch_idiom2def, fetch_epie
6
+ from idiomify.builders import Idiom2DefBuilder, Idiom2ContextBuilder, TargetsBuilder
7
  from transformers import BertTokenizer
8
 
9
 
 
30
  return self.X[idx], self.y[idx]
31
 
32
 
33
+ class Idiom2DefDataModule(LightningDataModule):
34
 
35
  # boilerplate - just ignore these
36
  def test_dataloader(self):
 
66
  """
67
  # --- set up the builders --- #
68
  # build the datasets
69
+ X = Idiom2DefBuilder(self.tokenizer)(self.idiom2def, self.config['k'])
70
+ y = TargetsBuilder(self.tokenizer)(self.idiom2def, self.idioms)
71
  self.dataset = IdiomifyDataset(X, y)
72
 
73
  def train_dataloader(self) -> DataLoader:
74
  return DataLoader(self.dataset, batch_size=self.config['batch_size'],
75
  shuffle=self.config['shuffle'], num_workers=self.config['num_workers'])
76
+
77
+
78
+ class Idiom2ContextsDataModule(LightningDataModule):
79
+
80
+ # boilerplate - just ignore these
81
+ def test_dataloader(self):
82
+ pass
83
+
84
+ def val_dataloader(self):
85
+ pass
86
+
87
+ def predict_dataloader(self):
88
+ pass
89
+
90
+ def __init__(self, config: dict, tokenizer: BertTokenizer, idioms: List[str]):
91
+ super().__init__()
92
+ self.config = config
93
+ self.tokenizer = tokenizer
94
+ self.idioms = idioms
95
+ self.idiom2context: Optional[List[Tuple[str, str]]] = None
96
+ self.dataset: Optional[IdiomifyDataset] = None
97
+
98
+ def prepare_data(self):
99
+ """
100
+ prepare: download all data needed for this from wandb to local.
101
+ """
102
+ self.idiom2context = [
103
+ (idiom, context)
104
+ for idiom, _, context in fetch_epie()
105
+ ]
106
+
107
+ def setup(self, stage: Optional[str] = None):
108
+ # build the datasets
109
+ X = Idiom2ContextBuilder(self.tokenizer)(self.idiom2context)
110
+ y = TargetsBuilder(self.tokenizer)(self.idiom2context, self.idioms)
111
+ self.dataset = IdiomifyDataset(X, y)
112
+
113
+ def train_dataloader(self):
114
+ return DataLoader(self.dataset, batch_size=self.config['batch_size'],
115
+ shuffle=self.config['shuffle'], num_workers=self.config['num_workers'])
idiomify/fetchers.py CHANGED
@@ -1,13 +1,47 @@
1
  import csv
2
  import yaml
3
  import wandb
 
4
  from typing import Tuple, List
5
- from idiomify.models import Alpha, Gamma, RD
 
 
 
6
  from idiomify.paths import idiom2def_dir, CONFIG_YAML, idioms_dir, alpha_dir
7
- from idiomify import tensors as T
 
 
 
 
 
 
 
 
8
  from transformers import AutoModelForMaskedLM, AutoConfig, BertTokenizer
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  # dataset
12
  def fetch_idiom2def(ver: str) -> List[Tuple[str, str]]:
13
  artifact = wandb.Api().artifact(f"eubinecto/idiomify-demo/idiom2def:{ver}", type="dataset")
@@ -45,7 +79,7 @@ def fetch_rd(model: str, ver: str) -> RD:
45
  ckpt_path = artifact_path / "rd.ckpt"
46
  idioms = fetch_idioms(config['idioms_ver'])
47
  tokenizer = BertTokenizer.from_pretrained(config['bert'])
48
- idiom2subwords = T.idiom2subwords(idioms, tokenizer, config['k'])
49
  if model == Alpha.name():
50
  rd = Alpha.load_from_checkpoint(str(ckpt_path), mlm=mlm, idiom2subwords=idiom2subwords)
51
  elif model == Gamma.name():
 
1
  import csv
2
  import yaml
3
  import wandb
4
+ import requests
5
  from typing import Tuple, List
6
+
7
+ from wandb.sdk.wandb_run import Run
8
+
9
+ from idiomify.models import Alpha, RD
10
  from idiomify.paths import idiom2def_dir, CONFIG_YAML, idioms_dir, alpha_dir
11
+ from idiomify.urls import (
12
+ EPIE_IMMUTABLE_IDIOMS_URL,
13
+ EPIE_IMMUTABLE_IDIOMS_CONTEXTS_URL,
14
+ EPIE_IMMUTABLE_IDIOMS_TAGS_URL,
15
+ EPIE_MUTABLE_IDIOMS_URL,
16
+ EPIE_MUTABLE_IDIOMS_CONTEXTS_URL,
17
+ EPIE_MUTABLE_IDIOMS_TAGS_URL
18
+ )
19
+ from idiomify.builders import Idiom2SubwordsBuilder
20
  from transformers import AutoModelForMaskedLM, AutoConfig, BertTokenizer
21
 
22
 
23
+ # sources for dataset
24
+ def fetch_epie() -> List[Tuple[str, str, str]]:
25
+ idioms = requests.get(EPIE_IMMUTABLE_IDIOMS_URL).text \
26
+ + requests.get(EPIE_MUTABLE_IDIOMS_URL).text
27
+ contexts = requests.get(EPIE_IMMUTABLE_IDIOMS_CONTEXTS_URL).text \
28
+ + requests.get(EPIE_MUTABLE_IDIOMS_CONTEXTS_URL).text
29
+ tags = requests.get(EPIE_IMMUTABLE_IDIOMS_TAGS_URL).text \
30
+ + requests.get(EPIE_MUTABLE_IDIOMS_TAGS_URL).text
31
+ return list(zip(idioms.strip().split("\n"),
32
+ contexts.strip().split("\n"),
33
+ tags.strip().split("\n")))
34
+
35
+
36
+ # you should somehow get this from... wandb.
37
+ def fetch_idiom2context(ver: str, run: Run = None) -> List[Tuple[str, str]]:
38
+ """
39
+ include run if you want to track the lineage
40
+ """
41
+ if run:
42
+ pass
43
+
44
+
45
  # dataset
46
  def fetch_idiom2def(ver: str) -> List[Tuple[str, str]]:
47
  artifact = wandb.Api().artifact(f"eubinecto/idiomify-demo/idiom2def:{ver}", type="dataset")
 
79
  ckpt_path = artifact_path / "rd.ckpt"
80
  idioms = fetch_idioms(config['idioms_ver'])
81
  tokenizer = BertTokenizer.from_pretrained(config['bert'])
82
+ idiom2subwords = Idiom2SubwordsBuilder(tokenizer)(idioms, config['k'])
83
  if model == Alpha.name():
84
  rd = Alpha.load_from_checkpoint(str(ckpt_path), mlm=mlm, idiom2subwords=idiom2subwords)
85
  elif model == Gamma.name():
idiomify/models.py CHANGED
@@ -174,101 +174,3 @@ class Alpha(RD):
174
  H_k = self.H_k(H_all) # (N, L, H) -> (N, K, H)
175
  S_wisdom = self.S_wisdom_literal(H_k) # (N, K, H) -> (N, |W|)
176
  return S_wisdom
177
-
178
-
179
- class BiLSTMPooler(torch.nn.Module):
180
- def __init__(self, hidden_size: int):
181
- super().__init__()
182
- self.lstm = torch.nn.LSTM(input_size=hidden_size, hidden_size=hidden_size // 2, batch_first=True,
183
- num_layers=1, bidirectional=True)
184
-
185
- def forward(self, X: torch.Tensor) -> torch.Tensor:
186
- hiddens, _ = self.lstm(X)
187
- return hiddens[:, -1]
188
-
189
-
190
- class Gamma(RD):
191
- """
192
- @eubinecto
193
- S_wisdom = S_wisdom_literal + S_wisdom_figurative
194
- but the way we get S_wisdom_figurative is much simplified, compared with RDBeta.
195
- """
196
-
197
- def __init__(self, mlm: BertForMaskedLM, idiom2subwords: torch.Tensor, k: int, lr: float):
198
- super().__init__(mlm, idiom2subwords, k, lr)
199
- # a pooler is a multilayer perceptron that pools wisdom_embeddings from idiom2subwords_embeddings
200
- self.pooler = BiLSTMPooler(self.mlm.config.hidden_size)
201
- # --- to be used to compute attentions --- #
202
- self.attention_mask: Optional[torch.Tensor] = None
203
-
204
- def forward(self, X: torch.Tensor) -> torch.Tensor:
205
- """
206
- :param X: (N, 4, L);
207
- (num samples, 0=input_ids/1=token_type_ids/2=attention_mask/3=wisdom_mask, the maximum length)
208
- :return: (N, L, H); (num samples, k, the size of the vocabulary of subwords)
209
- """
210
- input_ids = X[:, 0] # (N, 4, L) -> (N, L)
211
- token_type_ids = X[:, 1] # (N, 4, L) -> (N, L)
212
- self.attention_mask = X[:, 2] # (N, 4, L) -> (N, L)
213
- self.wisdom_mask = X[:, 3] # (N, 4, L) -> (N, L)
214
- self.desc_mask = X[:, 4] # (N, 4, L) -> (N, L)
215
- H_all = self.mlm.bert.forward(input_ids, self.attention_mask, token_type_ids)[0] # (N, 3, L) -> (N, L, H)
216
- return H_all
217
-
218
- def H_desc_attention_mask(self, attention_mask: torch.Tensor) -> torch.Tensor:
219
- """
220
- this is needed mask the padding tokens
221
- :param attention_mask: (N, L)
222
- """
223
- N, L = attention_mask.size()
224
- H_desc_attention_mask = torch.masked_select(attention_mask, self.desc_mask.bool())
225
- H_desc_attention_mask = H_desc_attention_mask.reshape(N, L - (self.hparams['k'] + 3))
226
- return H_desc_attention_mask
227
-
228
- def S_wisdom(self, H_all: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
229
- S_wisdom_literal = self.S_wisdom_literal(self.H_k(H_all))
230
- S_wisdom_figurative = self.S_wisdom_figurative(H_all)
231
- S_wisdom = S_wisdom_literal + S_wisdom_figurative
232
- return S_wisdom, S_wisdom_literal, S_wisdom_figurative
233
-
234
- def S_wisdom_figurative(self, H_all: torch.Tensor) -> torch.Tensor:
235
- # --- draw the embeddings for wisdoms from the embeddings of idiom2subwords -- #
236
- # this is to use as less of newly initialised weights as possible
237
- idiom2subwords_embeddings = self.mlm.bert \
238
- .embeddings.word_embeddings(self.idiom2subwords) # (W, K) -> (W, K, H)
239
- wisdom_embeddings = self.pooler(idiom2subwords_embeddings).squeeze() # (W, H, K) -> (W, H, 1) -> (W, H)
240
- # --- draw H_wisdom from H_desc with attention --- #
241
- H_cls = H_all[:, 0] # (N, L, H) -> (N, H)
242
- H_desc = self.H_desc(H_all) # (N, L, H) -> (N, D, H)
243
- H_desc_attention_mask = self.H_desc_attention_mask(self.attention_mask) # (N, L) -> (N, D)
244
- scores = torch.einsum("...h,...dh->...d", H_cls, H_desc) # (N, D)
245
- # ignore the padding tokens
246
- scores = torch.masked_fill(scores, H_desc_attention_mask != 1, float("-inf")) # (N, D)
247
- attentions = torch.softmax(scores, dim=1) # over D
248
- H_wisdom = torch.einsum("...d,...dh->...h", attentions, H_desc) # -> (N, H)
249
- # --- now compare H_wisdom with all the wisdoms --- #
250
- S_wisdom_figurative = torch.einsum("...h,wh->...w", H_wisdom, wisdom_embeddings) # (N, H) * (W, H) -> (N, W)
251
- return S_wisdom_figurative
252
-
253
- def training_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> dict:
254
- X, y = batch
255
- H_all = self.forward(X) # (N, 3, L) -> (N, L, H)
256
- S_wisdom, S_wisdom_literal, S_wisdom_figurative = self.S_wisdom(H_all) # (N, L, H) -> (N, |W|)
257
- loss_all = F.cross_entropy(S_wisdom, y).sum() # (N, |W|), (N,) -> (N,) -> (1,)
258
- loss_literal = F.cross_entropy(S_wisdom_literal, y).sum() # (N, |W|), (N,) -> (N,) -> (1,)
259
- loss_figurative = F.cross_entropy(S_wisdom_figurative, y).sum() # (N, |W|), (N,) -> (N,) -> (1,)
260
- loss = loss_all + loss_literal + loss_figurative # unweighted multi-task learning
261
- return {
262
- # you cannot change the keyword for the loss
263
- "loss": loss,
264
- }
265
-
266
- def P_wisdom(self, X: torch.Tensor) -> torch.Tensor:
267
- """
268
- :param X: (N, 3, L)
269
- :return P_wisdom: (N, |W|), normalized over dim 1.
270
- """
271
- H_all = self.forward(X) # (N, 3, L) -> (N, L, H)
272
- S_wisdom, _, _ = self.S_wisdom(H_all) # (N, L, H) -> (N, W)
273
- P_wisdom = F.softmax(S_wisdom, dim=1) # (N, W) -> (N, W)
274
- return P_wisdom
 
174
  H_k = self.H_k(H_all) # (N, L, H) -> (N, K, H)
175
  S_wisdom = self.S_wisdom_literal(H_k) # (N, K, H) -> (N, |W|)
176
  return S_wisdom
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
idiomify/tensors.py DELETED
@@ -1,56 +0,0 @@
1
- """
2
- all the functions for building tensors are defined here.
3
- builders must accept device as one of the parameters.
4
- """
5
- import torch
6
- from typing import List, Tuple
7
- from transformers import BertTokenizer
8
-
9
-
10
- def idiom2subwords(idioms: List[str], tokenizer: BertTokenizer, k: int) -> torch.Tensor:
11
- mask_id = tokenizer.mask_token_id
12
- pad_id = tokenizer.pad_token_id
13
- # temporarily disable single-token status of the idioms
14
- idioms = [idiom.split(" ") for idiom in idioms]
15
- encodings = tokenizer(text=idioms,
16
- add_special_tokens=False,
17
- # should set this to True, as we already have the idioms split.
18
- is_split_into_words=True,
19
- padding='max_length',
20
- max_length=k, # set to k
21
- return_tensors="pt")
22
- input_ids = encodings['input_ids']
23
- input_ids[input_ids == pad_id] = mask_id # replace them with masks
24
- return input_ids
25
-
26
-
27
- def inputs(idiom2def: List[Tuple[str, str]], tokenizer: BertTokenizer, k: int) -> torch.Tensor:
28
- defs = [definition for _, definition in idiom2def]
29
- lefts = [" ".join(["[MASK]"] * k)] * len(defs)
30
- encodings = tokenizer(text=lefts,
31
- text_pair=defs,
32
- return_tensors="pt",
33
- add_special_tokens=True,
34
- truncation=True,
35
- padding=True,
36
- verbose=True)
37
- input_ids: torch.Tensor = encodings['input_ids']
38
- cls_id: int = tokenizer.cls_token_id
39
- sep_id: int = tokenizer.sep_token_id
40
- mask_id: int = tokenizer.mask_token_id
41
-
42
- wisdom_mask = torch.where(input_ids == mask_id, 1, 0)
43
- desc_mask = torch.where(((input_ids != cls_id) & (input_ids != sep_id) & (input_ids != mask_id)), 1, 0)
44
- return torch.stack([input_ids,
45
- encodings['token_type_ids'],
46
- encodings['attention_mask'],
47
- wisdom_mask,
48
- desc_mask], dim=1)
49
-
50
-
51
- def targets(idiom2def: List[Tuple[str, str]], idioms: List[str]) -> torch.Tensor:
52
- return torch.LongTensor([
53
- idioms.index(idiom)
54
- for idiom, _ in idiom2def
55
- ])
56
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
idiomify/urls.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # EPIE dataset
3
+ EPIE_IMMUTABLE_IDIOMS_TAGS_URL = "https://raw.githubusercontent.com/prateeksaxena2809/EPIE_Corpus/master/Static_Idioms_Corpus/Static_Idioms_Tags.txt" # noqa
4
+ EPIE_IMMUTABLE_IDIOMS_URL = "https://raw.githubusercontent.com/prateeksaxena2809/EPIE_Corpus/master/Static_Idioms_Corpus/Static_Idioms_Candidates.txt" # noqa
5
+ EPIE_IMMUTABLE_IDIOMS_CONTEXTS_URL = "https://raw.githubusercontent.com/prateeksaxena2809/EPIE_Corpus/master/Static_Idioms_Corpus/Static_Idioms_Words.txt" # noqa
6
+ EPIE_MUTABLE_IDIOMS_TAGS_URL = "https://raw.githubusercontent.com/prateeksaxena2809/EPIE_Corpus/master/Formal_Idioms_Corpus/Formal_Idioms_Tags.txt" # noqa
7
+ EPIE_MUTABLE_IDIOMS_URL = "https://raw.githubusercontent.com/prateeksaxena2809/EPIE_Corpus/master/Formal_Idioms_Corpus/Formal_Idioms_Candidates.txt" # noqa
8
+ EPIE_MUTABLE_IDIOMS_CONTEXTS_URL = "https://github.com/prateeksaxena2809/EPIE_Corpus/blob/master/Formal_Idioms_Corpus/Formal_Idioms_Words.txt" # noqa
9
+
10
+
11
+
main_train.py CHANGED
@@ -6,7 +6,7 @@ import pytorch_lightning as pl
6
  from pytorch_lightning.loggers import WandbLogger
7
  from termcolor import colored
8
  from transformers import BertForMaskedLM, BertTokenizer
9
- from idiomify.datamodules import IdiomifyDataModule
10
  from idiomify.fetchers import fetch_config, fetch_idioms
11
  from idiomify.models import Alpha, Gamma
12
  from idiomify.paths import ROOT_DIR
@@ -40,7 +40,7 @@ def main():
40
  else:
41
  raise ValueError
42
  # prepare datamodule
43
- datamodule = IdiomifyDataModule(config, tokenizer, idioms)
44
 
45
  with wandb.init(entity="eubinecto", project="idiomify-demo", config=config) as run:
46
  logger = WandbLogger(log_model=False)
 
6
  from pytorch_lightning.loggers import WandbLogger
7
  from termcolor import colored
8
  from transformers import BertForMaskedLM, BertTokenizer
9
+ from idiomify.datamodules import Idiom2DefDataModule
10
  from idiomify.fetchers import fetch_config, fetch_idioms
11
  from idiomify.models import Alpha, Gamma
12
  from idiomify.paths import ROOT_DIR
 
40
  else:
41
  raise ValueError
42
  # prepare datamodule
43
+ datamodule = Idiom2DefDataModule(config, tokenizer, idioms)
44
 
45
  with wandb.init(entity="eubinecto", project="idiomify-demo", config=config) as run:
46
  logger = WandbLogger(log_model=False)
main_upload_idiom2context.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Build and upload an idiom2context dataset to wandb.
3
+ """
4
+
5
+
6
+ def main():
7
+ pass
8
+
9
+
10
+ if __name__ == '__main__':
11
+ main()
main_upload_idioms.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Here,
3
+ ver a: Compatible with the first version
4
+ ver b:
5
+ """
6
+
7
+
8
+ def main():
9
+ pass
10
+
11
+
12
+ if __name__ == '__main__':
13
+ main()
main_upload_tokenizer.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Build & upload a tokenizer to wandb.
3
+ You need this if you were to add more tokens there.
4
+ """
5
+
6
+
7
+ def main():
8
+ pass
9
+ # TODO: fetch the dataset from wandb first!
10
+
11
+
12
+ if __name__ == '__main__':
13
+ main()
requirements.txt CHANGED
@@ -1,66 +1,3 @@
1
- absl-py==1.0.0
2
- aiohttp==3.8.1
3
- aiosignal==1.2.0
4
- async-timeout==4.0.2
5
- attrs==21.4.0
6
- cachetools==4.2.4
7
- certifi==2021.10.8
8
- charset-normalizer==2.0.10
9
- click==8.0.3
10
- configparser==5.2.0
11
- docker-pycreds==0.4.0
12
- filelock==3.4.2
13
- frozenlist==1.3.0
14
- fsspec==2022.1.0
15
- future==0.18.2
16
- gitdb==4.0.9
17
- GitPython==3.1.26
18
- google-auth==2.3.3
19
- google-auth-oauthlib==0.4.6
20
- grpcio==1.43.0
21
- huggingface-hub==0.4.0
22
- idna==3.3
23
- importlib-metadata==4.10.1
24
- joblib==1.1.0
25
- Markdown==3.3.6
26
- multidict==5.2.0
27
- numpy==1.22.1
28
- oauthlib==3.1.1
29
- packaging==21.3
30
- pathtools==0.1.2
31
- promise==2.3
32
- protobuf==3.19.3
33
- psutil==5.9.0
34
- pyasn1==0.4.8
35
- pyasn1-modules==0.2.8
36
- pyDeprecate==0.3.1
37
- pyparsing==3.0.6
38
- python-dateutil==2.8.2
39
- pytorch-lightning==1.5.8
40
- PyYAML==6.0
41
- regex==2022.1.18
42
- requests==2.27.1
43
- requests-oauthlib==1.3.0
44
- rsa==4.8
45
- sacremoses==0.0.47
46
- sentry-sdk==1.5.2
47
- shortuuid==1.0.8
48
- six==1.16.0
49
- smmap==5.0.0
50
- subprocess32==3.5.4
51
- tensorboard==2.7.0
52
- tensorboard-data-server==0.6.1
53
- tensorboard-plugin-wit==1.8.1
54
- termcolor==1.1.0
55
- tokenizers==0.10.3
56
- torch==1.10.1
57
- torchmetrics==0.7.0
58
- tqdm==4.62.3
59
- transformers==4.15.0
60
- typing_extensions==4.0.1
61
- urllib3==1.26.8
62
- wandb==0.12.9
63
- Werkzeug==2.0.2
64
- yarl==1.7.2
65
- yaspin==2.1.0
66
- zipp==3.7.0
 
1
+ pytorch-lightning==1.5.10
2
+ transformers==4.16.2
3
+ wandb==0.12.10