import gradio as gr from gradio.data_classes import FileData from huggingface_hub import snapshot_download from pathlib import Path import base64 import spaces import os from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage, AssistantMessage, TextChunk, ImageURLChunk from mistral_common.protocol.instruct.request import ChatCompletionRequest models_path = Path.home().joinpath('pixtral', 'Pixtral') models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistral-community/pixtral-12b-240910", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=models_path) tokenizer = MistralTokenizer.from_file(f"{models_path}/tekken.json") model = Transformer.from_folder(models_path) def image_to_base64(image_path): with open(image_path, 'rb') as img: encoded_string = base64.b64encode(img.read()).decode('utf-8') return f"data:image/jpeg;base64,{encoded_string}" @spaces.GPU(duration=30) def run_inference(message, history): print(message) print(history) ## to be fixed messages = [] for couple in history: messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(file["path"])) for file in couple[0][0]]+[TextChunk(text=couple[0][1])])) messages.append(AssistantMessage(content = couple[1])) ## messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(file["path"])) for file in message["files"]]+[TextChunk(text=message["text"])])) completion_request = ChatCompletionRequest(messages=messages) encoded = tokenizer.encode_chat_completion(completion_request) images = encoded.images tokens = encoded.tokens out_tokens, _ = generate([tokens], model, images=[images], max_tokens=512, temperature=0.45, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.decode(out_tokens[0]) return result demo = gr.ChatInterface(fn=run_inference, title="Pixtral 12B", multimodal=True) demo.queue().launch()