Spaces:
Sleeping
Sleeping
from dotenv import load_dotenv | |
load_dotenv() # take environment variables from .env. | |
import gradio as gr | |
import openai | |
import os | |
# Define a function to get the AI's reply using the OpenAI API | |
def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]): | |
# Initialize the messages list | |
messages = [] | |
# Add the system message to the messages list | |
if system_message is not None: | |
messages += [{"role": "system", "content": system_message}] | |
# Add the message history to the messages list | |
if message_history is not None: | |
messages += message_history | |
# Add the user's message to the messages list | |
messages += [{"role": "user", "content": message}] | |
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages | |
completion = openai.ChatCompletion.create( | |
model=model, | |
messages=messages, | |
temperature=temperature | |
) | |
print("get AI reply ran successfully") | |
# Extract and return the AI's response from the API response | |
return completion.choices[0].message.content.strip() | |
# Define a function to handle the chat interaction with the AI model | |
def chat(message, chatbot_messages, history_state): | |
# Initialize chatbot_messages and history_state if they are not provided | |
chatbot_messages = chatbot_messages or [] | |
history_state = history_state or [] | |
# Try to get the AI's reply using the get_ai_reply function | |
try: | |
prompt = """ | |
You are bot created to simulate commands. | |
You can only follow commands if they clearly say "simon says". | |
Simulate an action using this notation: | |
:: <action> :: | |
Simulate doing nothing with this notation: | |
:: does nothing :: | |
If the user does not give a clear command, reply with ":: does nothing ::" | |
""" | |
ai_reply = get_ai_reply(message, model="gpt-3.5-turbo", system_message=prompt.strip(), message_history=history_state) | |
# Append the user's message and the AI's reply to the chatbot_messages list | |
chatbot_messages.append((message, ai_reply)) | |
# Append the user's message and the AI's reply to the history_state list | |
history_state.append({"role": "user", "content": message}) | |
history_state.append({"role": "assistant", "content": ai_reply}) | |
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state | |
except Exception as e: | |
# If an error occurs, raise a Gradio error | |
raise gr.Error(e) | |
print("chat ran successfully") | |
return None, chatbot_messages, history_state | |
# Define a function to launch the chatbot interface using Gradio | |
def get_chatbot_app(): | |
# Create the Gradio interface using the Blocks layout | |
with gr.Blocks() as app: | |
# Create a chatbot interface for the conversation | |
chatbot = gr.Chatbot(label="Conversation") | |
# Create a textbox for the user's message | |
message = gr.Textbox(label="Message") | |
# Create a state object to store the conversation history | |
history_state = gr.State() | |
# Create a button to send the user's message | |
btn = gr.Button(value="Send") | |
# Connect the send button to the chat function | |
btn.click(chat, inputs=[message, chatbot, history_state], outputs=[message, chatbot, history_state]) | |
# Return the app | |
return app | |
# Call the launch_chatbot function to start the chatbot interface using Gradio | |
app = get_chatbot_app() | |
app.queue() # this is to be able to queue multiple requests at once | |
app.launch() | |