|
import joblib |
|
import gradio as gr |
|
import pandas as pd |
|
|
|
|
|
model = joblib.load('gradient_boosting_model.pkl') |
|
|
|
|
|
def predict_rent(condado, estado, valor_venta, total_housing_units, median_rooms, fuel_oil, tasa_desempleo): |
|
|
|
input_data = pd.DataFrame({ |
|
'condado': [condado], |
|
'estado': [estado], |
|
'valor_venta': [valor_venta], |
|
'total_housing_units': [total_housing_units], |
|
'median_rooms': [median_rooms], |
|
'fuel_oil,_kerosene,_etc.': [fuel_oil], |
|
'tasa_desempleo': [tasa_desempleo] |
|
}) |
|
|
|
|
|
input_data = pd.get_dummies(input_data, columns=['estado'], drop_first=True) |
|
|
|
|
|
missing_cols = set(model.feature_names_in_) - set(input_data.columns) |
|
for col in missing_cols: |
|
input_data[col] = 0 |
|
input_data = input_data[model.feature_names_in_] |
|
|
|
|
|
prediction = model.predict(input_data) |
|
return prediction[0] |
|
|
|
|
|
inputs = [ |
|
gr.Textbox(label="Estado", interactive=True), |
|
gr.Textbox(label="Condado", interactive=True), |
|
gr.Slider(label="Valor de Venta ($)", value=100000, minimum=50000, maximum=5000000, step=10000), |
|
gr.Slider(label="# de habitaciones", value=3, minimum=1, maximum=10, step=1), |
|
gr.Slider(label="Tasa de Desempleo (%)", value=0.05, minimum=0.0, maximum=0.2, step=0.01), |
|
gr.Number(label="Total de propiedades para rentar", interactive=True), |
|
gr.Number(label="Propiedades con uso de Gasolina y Keroseno", interactive=True) |
|
] |
|
output = gr.Textbox(label="Predicci贸n de la Renta Mensual") |
|
|
|
|
|
app = gr.Interface( |
|
fn=predict_rent, |
|
inputs=inputs, |
|
outputs=output, |
|
title="Predicci贸n de Renta Mensual", |
|
description="Ingrese las caracter铆sticas de la vivienda para predecir el valor mensual de la renta.", |
|
theme="compact", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.launch() |