eruizgar91 commited on
Commit
b0df4b4
Β·
1 Parent(s): 2b95436

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -27
app.py CHANGED
@@ -1,39 +1,96 @@
1
  import streamlit as st
2
  import os
 
 
3
  from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs
4
  from haystack.schema import Answer
5
  from haystack.document_stores import InMemoryDocumentStore
6
- from haystack.pipelines import ExtractiveQAPipeline
7
- from haystack.nodes import FARMReader, TfidfRetriever
 
 
 
8
  import logging
9
  from markdown import markdown
10
  from annotated_text import annotation
11
  from PIL import Image
 
 
 
 
 
12
 
13
- os.environ['TOKENIZERS_PARALLELISM'] ="false"
14
 
15
- #Haystack Components
16
- @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True)
 
17
  def start_haystack():
18
- document_store = InMemoryDocumentStore()
 
 
 
 
19
  load_and_write_data(document_store)
20
- retriever = TfidfRetriever(document_store=document_store)
21
- reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-distilled", use_gpu=True)
22
- pipeline = ExtractiveQAPipeline(reader, retriever)
23
- return pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  def load_and_write_data(document_store):
26
  doc_dir = './dao_data'
27
- docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True)
 
28
 
29
  document_store.write_documents(docs)
30
 
 
31
  pipeline = start_haystack()
32
 
 
33
  def set_state_if_absent(key, value):
34
  if key not in st.session_state:
35
  st.session_state[key] = value
36
 
 
37
  set_state_if_absent("question", "What is the goal of VitaDAO?")
38
  set_state_if_absent("results", None)
39
 
@@ -41,31 +98,38 @@ set_state_if_absent("results", None)
41
  def reset_results(*args):
42
  st.session_state.results = None
43
 
44
- #Streamlit App
 
45
 
46
  image = Image.open('got-haystack.png')
47
  st.image(image)
48
 
49
- st.markdown( """
50
- This QA demo uses a [Haystack Extractive QA Pipeline](https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with
51
- an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains documents about Game of Thrones πŸ‘‘
 
 
52
  Go ahead and ask questions about the marvellous kingdom!
53
  """, unsafe_allow_html=True)
54
 
55
- question = st.text_input("", value=st.session_state.question, max_chars=100, on_change=reset_results)
 
 
56
 
57
  def ask_question(question):
58
- prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
 
59
  results = []
60
  for answer in prediction["answers"]:
61
  answer = answer.to_dict()
62
  if answer["answer"]:
 
63
  results.append(
64
  {
65
- "context": "..." + answer["context"] + "...",
66
  "answer": answer["answer"],
67
- "relevance": round(answer["score"] * 100, 2),
68
- "offset_start_in_doc": answer["offsets_in_document"][0]["start"],
69
  }
70
  )
71
  else:
@@ -73,21 +137,20 @@ def ask_question(question):
73
  {
74
  "context": None,
75
  "answer": None,
76
- "relevance": round(answer["score"] * 100, 2),
77
  }
78
  )
79
  return results
80
 
 
81
  if question:
82
  with st.spinner("πŸ‘‘    Performing semantic search on royal scripts..."):
83
  try:
84
  msg = 'Asked ' + question
85
  logging.info(msg)
86
- st.session_state.results = ask_question(question)
87
  except Exception as e:
88
  logging.exception(e)
89
-
90
-
91
 
92
  if st.session_state.results:
93
  st.write('## Top Results')
@@ -97,11 +160,14 @@ if st.session_state.results:
97
  start_idx = context.find(answer)
98
  end_idx = start_idx + len(answer)
99
  st.write(
100
- markdown(context[:start_idx] + str(annotation(body=answer, label="ANSWER", background="#964448", color='#ffffff')) + context[end_idx:]),
 
 
101
  unsafe_allow_html=True,
102
  )
103
- st.markdown(f"**Relevance:** {result['relevance']}")
104
  else:
105
  st.info(
106
- "πŸ€”    Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
 
107
  )
 
1
  import streamlit as st
2
  import os
3
+
4
+ from haystack import Pipeline
5
  from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs
6
  from haystack.schema import Answer
7
  from haystack.document_stores import InMemoryDocumentStore
8
+ from haystack.pipelines import DocumentSearchPipeline, ExtractiveQAPipeline, GenerativeQAPipeline
9
+ from haystack.nodes import (DensePassageRetriever, EmbeddingRetriever, FARMReader,
10
+ OpenAIAnswerGenerator, Seq2SeqGenerator,
11
+ TfidfRetriever)
12
+ from haystack.nodes import RAGenerator
13
  import logging
14
  from markdown import markdown
15
  from annotated_text import annotation
16
  from PIL import Image
17
+ logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
18
+ logging.getLogger("haystack").setLevel(logging.INFO)
19
+
20
+ os.environ['TOKENIZERS_PARALLELISM'] = "false"
21
+ MY_API_KEY = os.environ.get("MY_API_KEY")
22
 
 
23
 
24
+ # Haystack Components
25
+ # @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None}, allow_output_mutation=True)
26
+ @st.cache_data
27
  def start_haystack():
28
+ # document_store = InMemoryDocumentStore()
29
+ # For dense retriever
30
+ document_store = InMemoryDocumentStore(embedding_dim=128)
31
+ # For OPEN AI retriever
32
+ # document_store = InMemoryDocumentStore(embedding_dim=1024)
33
  load_and_write_data(document_store)
34
+ # retriever = TfidfRetriever(document_store=document_store)
35
+ retriever = DensePassageRetriever(
36
+ document_store=document_store,
37
+ query_embedding_model="vblagoje/dpr-question_encoder-single-lfqa-wiki",
38
+ passage_embedding_model="vblagoje/dpr-ctx_encoder-single-lfqa-wiki",
39
+ )
40
+
41
+ # retriever = EmbeddingRetriever(
42
+ # document_store=document_store,
43
+ # embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
44
+ # model_format="sentence_transformers",
45
+ # )
46
+ document_store.update_embeddings(retriever)
47
+
48
+ # OPEN AI
49
+ # retriever = EmbeddingRetriever(
50
+ # document_store=document_store,
51
+ # batch_size=8,
52
+ # embedding_model="ada",
53
+ # api_key=MY_API_KEY,
54
+ # max_seq_len=1024
55
+ # )
56
+ # document_store.update_embeddings(retriever)
57
+
58
+ # reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True)
59
+ # pipeline = ExtractiveQAPipeline(reader, retriever)
60
+
61
+ generator = Seq2SeqGenerator(model_name_or_path="vblagoje/bart_lfqa")
62
+ # generator = OpenAIAnswerGenerator(
63
+ # api_key=MY_API_KEY,
64
+ # model="text-davinci-003",
65
+ # max_tokens=50,
66
+ # presence_penalty=0.1,
67
+ # frequency_penalty=0.1,
68
+ # top_k=3,
69
+ # temperature=0.9
70
+ # )
71
+ # pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
72
+ # pipe.add_node(component=generator, name="prompt_node", inputs=["Query"])
73
+ pipe = GenerativeQAPipeline(generator=generator, retriever=retriever)
74
+
75
+ return pipe
76
+
77
 
78
  def load_and_write_data(document_store):
79
  doc_dir = './dao_data'
80
+ docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text,
81
+ split_paragraphs=True)
82
 
83
  document_store.write_documents(docs)
84
 
85
+
86
  pipeline = start_haystack()
87
 
88
+
89
  def set_state_if_absent(key, value):
90
  if key not in st.session_state:
91
  st.session_state[key] = value
92
 
93
+
94
  set_state_if_absent("question", "What is the goal of VitaDAO?")
95
  set_state_if_absent("results", None)
96
 
 
98
  def reset_results(*args):
99
  st.session_state.results = None
100
 
101
+
102
+ # Streamlit App
103
 
104
  image = Image.open('got-haystack.png')
105
  st.image(image)
106
 
107
+ st.markdown("""
108
+ This QA demo uses a [Haystack Extractive QA Pipeline](
109
+ https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with
110
+ an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains
111
+ documents about Game of Thrones πŸ‘‘
112
  Go ahead and ask questions about the marvellous kingdom!
113
  """, unsafe_allow_html=True)
114
 
115
+ question = st.text_input("", value=st.session_state.question, max_chars=100,
116
+ on_change=reset_results)
117
+
118
 
119
  def ask_question(question):
120
+ # prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
121
+ prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Generator": {"top_k": 1}})
122
  results = []
123
  for answer in prediction["answers"]:
124
  answer = answer.to_dict()
125
  if answer["answer"]:
126
+ print(answer)
127
  results.append(
128
  {
129
+ "context": "..." + str(answer["context"]) + "...",
130
  "answer": answer["answer"],
131
+ # "relevance": round(answer["score"] * 100, 2),
132
+ # "offset_start_in_doc": answer["offsets_in_document"][0]["start"],
133
  }
134
  )
135
  else:
 
137
  {
138
  "context": None,
139
  "answer": None,
140
+ # "relevance": round(answer["score"] * 100, 2),
141
  }
142
  )
143
  return results
144
 
145
+
146
  if question:
147
  with st.spinner("πŸ‘‘    Performing semantic search on royal scripts..."):
148
  try:
149
  msg = 'Asked ' + question
150
  logging.info(msg)
151
+ st.session_state.results = ask_question(question)
152
  except Exception as e:
153
  logging.exception(e)
 
 
154
 
155
  if st.session_state.results:
156
  st.write('## Top Results')
 
160
  start_idx = context.find(answer)
161
  end_idx = start_idx + len(answer)
162
  st.write(
163
+ markdown(context[:start_idx] + str(
164
+ annotation(body=answer, label="ANSWER", background="#964448",
165
+ color='#ffffff')) + context[end_idx:]),
166
  unsafe_allow_html=True,
167
  )
168
+ # st.markdown(f"**Relevance:** {result['relevance']}")
169
  else:
170
  st.info(
171
+ "πŸ€”    Haystack is unsure whether any of the documents contain an "
172
+ "answer to your question. Try to reformulate it!"
173
  )