Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,18 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
from transformers import AutoTokenizer
|
5 |
import torch
|
6 |
|
7 |
# Initialize model and tokenizer
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def format_diff_response(response):
|
13 |
"""Format the response to look like a diff output"""
|
@@ -21,28 +26,40 @@ def format_diff_response(response):
|
|
21 |
else:
|
22 |
formatted.append(line)
|
23 |
return '<br>'.join(formatted)
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
{"role": "system", "content": system_message},
|
29 |
-
{"role": "user", "content": f"""<request>{request}</request>
|
30 |
<file>
|
31 |
{file_content}
|
32 |
-
</file>"""
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
response = ""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
temperature=temperature,
|
41 |
top_p=top_p,
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
yield format_diff_response(response)
|
47 |
|
48 |
# Create the Gradio interface
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
# Initialize model and tokenizer
|
7 |
+
MODEL_ID = "erikbeltran/pydiff"
|
8 |
+
GGUF_FILE = "unsloth.Q4_K_M.gguf"
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
|
12 |
+
|
13 |
+
# Move model to GPU if available
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
model = model.to(device)
|
16 |
|
17 |
def format_diff_response(response):
|
18 |
"""Format the response to look like a diff output"""
|
|
|
26 |
else:
|
27 |
formatted.append(line)
|
28 |
return '<br>'.join(formatted)
|
29 |
+
|
30 |
+
def create_prompt(request, file_content, system_message):
|
31 |
+
return f"""<system>{system_message}</system>
|
32 |
+
<request>{request}</request>
|
|
|
|
|
33 |
<file>
|
34 |
{file_content}
|
35 |
+
</file>"""
|
36 |
+
|
37 |
+
@spaces.GPU
|
38 |
+
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
|
39 |
+
prompt = create_prompt(request, file_content, system_message)
|
40 |
+
|
41 |
+
# Tokenize input
|
42 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
43 |
|
44 |
+
# Generate response with streaming
|
45 |
response = ""
|
46 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
47 |
+
|
48 |
+
generation_kwargs = dict(
|
49 |
+
inputs=inputs["input_ids"],
|
50 |
+
max_new_tokens=max_tokens,
|
51 |
temperature=temperature,
|
52 |
top_p=top_p,
|
53 |
+
streamer=streamer,
|
54 |
+
)
|
55 |
+
|
56 |
+
# Start generation in a separate thread
|
57 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
58 |
+
thread.start()
|
59 |
+
|
60 |
+
# Yield formatted responses as they're generated
|
61 |
+
for new_text in streamer:
|
62 |
+
response += new_text
|
63 |
yield format_diff_response(response)
|
64 |
|
65 |
# Create the Gradio interface
|