ericbanzuzi commited on
Commit
524e58d
·
1 Parent(s): 35e66b9

datacentric model

Browse files
Files changed (2) hide show
  1. app.py +19 -51
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,64 +1,32 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
  stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ from llama_cpp import Llama
2
  import gradio as gr
 
3
 
 
 
 
 
4
 
5
+ llm = Llama.from_pretrained(
6
+ repo_id="ericbanzuzi/model_datacentric_llama_gguf",
7
+ filename="unsloth.Q4_K_M.gguf",
8
+ )
9
 
10
+ def predict(message, history):
11
+ messages = [{"role": "system", "content": "You are a helpful assistant."}]
12
+ for user_message, bot_message in history:
13
+ if user_message:
14
+ messages.append({"role": "user", "content": user_message})
15
+ if bot_message:
16
+ messages.append({"role": "assistant", "content": bot_message})
 
 
 
 
 
 
 
 
 
17
  messages.append({"role": "user", "content": message})
18
+
19
  response = ""
20
+ for chunk in llm.create_chat_completion(
 
 
 
21
  stream=True,
22
+ messages=messages,
 
23
  ):
24
+ part = chunk["choices"][0]["delta"].get("content", None)
25
+ if part:
26
+ response += part
27
  yield response
28
 
29
+ demo = gr.ChatInterface(predict)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  if __name__ == "__main__":
32
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.25.2
 
 
 
1
+ huggingface_hub==0.25.2
2
+ llama-cpp-python
3
+ gradio