import os import streamlit as st from utils import get_configs, get_display_names, get_path_for_viz # st.header("EVREAL - Event-based Video Reconstruction Evaluation and Analysis Library") # # paper_link = "https://arxiv.org/abs/2305.00434" # code_link = "https://github.com/ercanburak/EVREAL" # page_link = "https://ercanburak.github.io/evreal.html" # instructions_video = "https://www.youtube.com/watch?v=" # # st.markdown("Paper: " + paper_link, unsafe_allow_html=True) # st.markdown("Code: " + paper_link, unsafe_allow_html=True) # st.markdown("Page: " + paper_link, unsafe_allow_html=True) # st.markdown("Please see this video for instructions on how to use this tool: " + instructions_video, unsafe_allow_html=True) st.title("Result Analysis Tool") data_base_path = "/home/bercan/ebv/evreal_data" dataset_cfg_path = os.path.join("cfg", "dataset") model_cfg_path = os.path.join("cfg", "model") metric_cfg_path = os.path.join("cfg", "metric") viz_cfg_path = os.path.join("cfg", "viz") datasets = get_configs(dataset_cfg_path) models = get_configs(model_cfg_path) metrics = get_configs(metric_cfg_path) visualizations = get_configs(viz_cfg_path) dataset_display_names = get_display_names(datasets) model_display_names = get_display_names(models) metric_display_names = get_display_names(metrics) viz_display_names = get_display_names(visualizations) assert len(set(dataset_display_names)) == len(dataset_display_names), "Dataset display names are not unique" assert len(set(model_display_names)) == len(model_display_names), "Model display names are not unique" assert len(set(metric_display_names)) == len(metric_display_names), "Metric display names are not unique" assert len(set(viz_display_names)) == len(viz_display_names), "Viz display names are not unique" selected_model_names = st.multiselect('Select multiple methods to compare', model_display_names) selected_models = [model for model in models if model['display_name'] in selected_model_names] col1, col2 = st.columns(2) with col1: selected_dataset_name = st.selectbox('Select dataset', options=dataset_display_names) selected_dataset = [dataset for dataset in datasets if dataset['display_name'] == selected_dataset_name][0] with col2: selected_sequence = st.selectbox('Select sequence', options=selected_dataset["sequences"].keys()) usable_metrics = [metric for metric in metrics if metric['no_ref'] == selected_dataset['no_ref']] usable_metric_display_names = get_display_names(usable_metrics) selected_metric_names = st.multiselect('Select metrics to display', usable_metric_display_names) selected_metrics = [metric for metric in usable_metrics if metric['display_name'] in selected_metric_names] if not selected_dataset['has_frames']: usable_viz = [viz for viz in visualizations if viz['gt_type'] != 'frame'] else: usable_viz = visualizations usable_viz_display_names = get_display_names(usable_viz) selected_viz = st.multiselect('Select other visualizations to display', usable_viz_display_names) selected_visualizations = [viz for viz in visualizations if viz['display_name'] in selected_viz] if not st.button('Get Results'): st.stop() gt_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'gt_only'] model_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'model_only'] both_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'both'] recon_viz = {"name": "recon", "display_name": "Reconstruction", "viz_type": "both", "gt_type": "frame"} ground_truth = {"name": "gt", "display_name": "Ground Truth", "model_id": "groundtruth"} model_viz = [recon_viz] + both_viz + selected_metrics + model_only_viz num_model_rows = len(model_viz) + 1 gt_viz = [] if selected_dataset['has_frames']: gt_viz.append(recon_viz) gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'frame']) gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'frame']) gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'event']) gt_viz.extend([viz for viz in gt_viz if viz['gt_type'] == 'event']) num_gt_rows = len(gt_viz) + 1 num_rows = max(num_model_rows, num_gt_rows) num_model_columns = len(selected_models) + 1 for row_idx in range(num_rows): row_visualizations = [] for col_idx in range(num_model_columns): if row_idx == 0 and col_idx == 0: print("meta") pass elif row_idx == 0: # model names print(selected_models[col_idx - 1]['display_name']) pass elif col_idx == 0: # metric names print(model_viz[row_idx - 1]['display_name']) pass else: video_path = get_path_for_viz(data_base_path, selected_dataset, selected_sequence, selected_models[col_idx - 1], model_viz[row_idx - 1]) print(video_path) pass