Spaces:
Runtime error
Runtime error
File size: 9,923 Bytes
8c31b90 95312c3 cebe383 8c31b90 df9abf4 213154b df9abf4 8c31b90 df9abf4 8c31b90 df9abf4 58538bf 7ce8504 58538bf 3ff595d 58538bf d123883 58538bf 7ce8504 58538bf 026b32c 58538bf 026b32c df9abf4 8b5d61a 8c31b90 0d0ab89 df9abf4 8c31b90 0d0ab89 df9abf4 8c31b90 df9abf4 8c31b90 df9abf4 8c31b90 df9abf4 8c31b90 df9abf4 8f43f06 abcfaf7 8f43f06 8c31b90 df9abf4 8f43f06 abcfaf7 df9abf4 c103e03 abcfaf7 df9abf4 8c31b90 58538bf b0547a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import subprocess
import glob
import streamlit as st
from utils import get_configs, get_display_names, get_path_for_viz, get_text_str
# st.header("EVREAL - Event-based Video Reconstruction Evaluation and Analysis Library")
#
# paper_link = "https://arxiv.org/abs/2305.00434"
# code_link = "https://github.com/ercanburak/EVREAL"
# page_link = "https://ercanburak.github.io/evreal.html"
# instructions_video = "https://www.youtube.com/watch?v="
#
# st.markdown("Paper: " + paper_link, unsafe_allow_html=True)
# st.markdown("Code: " + paper_link, unsafe_allow_html=True)
# st.markdown("Page: " + paper_link, unsafe_allow_html=True)
# st.markdown("Please see this video for instructions on how to use this tool: " + instructions_video, unsafe_allow_html=True)
@st.cache_data(show_spinner="Retrieving results...")
def retrieve_results(selected_dataset, selected_sequence, selected_models, selected_metrics, selected_visualizations):
gt_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'gt_only']
model_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'model_only']
both_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'both']
recon_viz = {"name": "recon", "display_name": "Reconstruction", "viz_type": "both", "gt_type": "frame"}
ground_truth = {"name": "gt", "display_name": "Ground Truth", "model_id": "groundtruth"}
model_viz = [recon_viz] + both_viz + selected_metrics + model_only_viz
num_model_rows = len(model_viz)
gt_viz = []
if selected_dataset['has_frames']:
gt_viz.append(recon_viz)
gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'frame'])
gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'frame'])
gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'event'])
gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'event'])
num_gt_rows = len(gt_viz)
num_rows = max(num_model_rows, num_gt_rows)
# total_videos_needed = len(selected_models) * num_model_rows + num_gt_rows
if len(gt_viz) > 0:
selected_models.append(ground_truth)
padding = 2
font_size = 20
num_cols = len(selected_models)
crop_str = "crop=trunc(iw/2)*2-2:trunc(ih/2)*2,"
pad_str = "pad=ceil(iw/2)*2+{}:ceil(ih/2)*2+{}:{}:{}:white".format(padding*2, padding*2, padding, padding)
num_elements = num_rows * num_cols
# remove previous temp data
files = glob.glob('temp_data/temp_*.mp4')
for f in files:
os.remove(f)
w = selected_dataset["width"]
h = selected_dataset["height"]
input_filter_parts = []
xstack_input_parts = []
layout_parts = []
video_paths = []
row_heights = [""]*num_rows
gt_viz_indices = []
if len(model_viz) > 1:
left_pad = (font_size*0.7)*max([len(viz['display_name']) for viz in model_viz[1:]]) + padding*2
else:
left_pad = 0
for row_idx in range(num_rows):
for col_idx in range(num_cols):
vid_idx = len(video_paths)
# progress_bar.progress(float(vid_idx) / total_videos_needed)
cur_model = selected_models[col_idx]
if cur_model['name'] == "gt":
if row_idx < len(gt_viz):
video_path = get_path_for_viz(base_data_dir, selected_dataset, selected_sequence, cur_model, gt_viz[row_idx])
if not os.path.isfile(video_path):
raise ValueError("Could not find video: " + video_path)
gt_viz_indices.append(vid_idx)
else:
continue
else:
if row_idx < len(model_viz):
video_path = get_path_for_viz(base_data_dir, selected_dataset, selected_sequence, cur_model, model_viz[row_idx])
if not os.path.isfile(video_path):
raise ValueError("Could not find video: " + video_path)
else:
continue
if row_heights[row_idx] == "":
row_heights[row_idx] = "h{}".format(vid_idx)
if row_idx == 0:
pad_height = font_size+padding*2
pad_txt_str = ",pad={}:{}:0:{}:white".format(w+padding*2, h+font_size+padding*4, pad_height)
text_str = get_text_str(pad_height, w, cur_model['display_name'], font_size)
pad_txt_str = pad_txt_str + "," + text_str
elif col_idx == 0:
pad_txt_str = ",pad={}:ih:{}:0:white".format(w + left_pad + padding * 2, left_pad)
if len(model_viz) > row_idx > 0:
text_str = get_text_str("h", left_pad, model_viz[row_idx]['display_name'], font_size)
pad_txt_str = pad_txt_str + "," + text_str
else:
pad_txt_str = ""
input_filter_part = "[{}:v]scale={}:-1,{}{}{}[v{}]".format(vid_idx, w, crop_str, pad_str, pad_txt_str, vid_idx)
input_filter_parts.append(input_filter_part)
xstack_input_part = "[v{}]".format(vid_idx)
xstack_input_parts.append(xstack_input_part)
video_paths.append(video_path)
if row_idx == 0 or col_idx > 0:
layout_w_parts = [str(left_pad)] + ["w{}".format(i) for i in range(col_idx)]
layout_w = "+".join(layout_w_parts)
else:
layout_w = "+".join(["w{}".format(i) for i in range(col_idx)]) if col_idx > 0 else "0"
if cur_model['name'] == "gt":
layout_h = "+".join(["h{}".format(i) for i in gt_viz_indices[:-1]]) if row_idx > 0 else "0"
else:
layout_h = "+".join(row_heights[:row_idx]) if row_idx > 0 else "0"
layout_part = layout_w + "_" + layout_h
layout_parts.append(layout_part)
inputs_str = " ".join(["-i " + video_path for video_path in video_paths])
num_inputs = len(video_paths)
input_scaling_str = ";".join(input_filter_parts)
xstack_input_str = "".join(xstack_input_parts)
layout_str = "|".join(layout_parts)
# opt = "-c:v libx264 -preset veryslow -crf 18 -c:a copy"
opt = ""
# opt_fill = ":fill=black"
opt_fill = ":fill=white"
# opt_fill = ""
if num_inputs > 1:
ffmpeg_command_str = "ffmpeg -y " + inputs_str + " -filter_complex \"" + input_scaling_str + ";" + xstack_input_str + "xstack=inputs=" + str(num_inputs) + ":layout=" + layout_str + opt_fill + "\"" + opt + " output.mp4"
else:
# remove last paranthesis
idx = input_scaling_str.rfind("[")
input_scaling_str = input_scaling_str[:idx]
ffmpeg_command_str = "ffmpeg -y " + inputs_str + " -filter_complex \"" + input_scaling_str + "\"" + opt + " output.mp4"
print(ffmpeg_command_str)
ret = subprocess.call(ffmpeg_command_str, shell=True)
if ret != 0:
return None
video_file = open('output.mp4', 'rb')
video_bytes = video_file.read()
return video_bytes
st.title("Result Analysis Tool")
base_data_dir = "data"
dataset_cfg_path = os.path.join("cfg", "dataset")
model_cfg_path = os.path.join("cfg", "model")
metric_cfg_path = os.path.join("cfg", "metric")
viz_cfg_path = os.path.join("cfg", "viz")
datasets = get_configs(dataset_cfg_path)
models = get_configs(model_cfg_path)
metrics = get_configs(metric_cfg_path)
visualizations = get_configs(viz_cfg_path)
dataset_display_names = get_display_names(datasets)
model_display_names = get_display_names(models)
metric_display_names = get_display_names(metrics)
viz_display_names = get_display_names(visualizations)
assert len(set(dataset_display_names)) == len(dataset_display_names), "Dataset display names are not unique"
assert len(set(model_display_names)) == len(model_display_names), "Model display names are not unique"
assert len(set(metric_display_names)) == len(metric_display_names), "Metric display names are not unique"
assert len(set(viz_display_names)) == len(viz_display_names), "Viz display names are not unique"
col1, col2 = st.columns(2)
with col1:
selected_dataset_name = st.selectbox('Select dataset', options=dataset_display_names)
selected_dataset = [dataset for dataset in datasets if dataset['display_name'] == selected_dataset_name][0]
with col2:
selected_sequence = st.selectbox('Select sequence', options=selected_dataset["sequences"].keys())
selected_model_names = st.multiselect('Select multiple methods to compare', model_display_names)
selected_models = [models[model_display_names.index(model_name)] for model_name in selected_model_names]
disable_metrics = len(selected_models) == 0
if disable_metrics:
tooltip_str = "Select at least one method to enable metric selection"
else:
tooltip_str = ""
usable_metrics = [metric for metric in metrics if metric['no_ref'] == selected_dataset['no_ref']]
usable_metric_display_names = get_display_names(usable_metrics)
selected_metric_names = st.multiselect('Select metrics to display', usable_metric_display_names,
disabled=disable_metrics, help=tooltip_str)
selected_metrics = [metrics[metric_display_names.index(metric_name)] for metric_name in selected_metric_names]
if not selected_dataset['has_frames']:
usable_viz = [viz for viz in visualizations if viz['gt_type'] != 'frame']
else:
usable_viz = visualizations
usable_viz_display_names = get_display_names(usable_viz)
selected_viz = st.multiselect('Select other visualizations to display', usable_viz_display_names)
selected_visualizations = [visualizations[viz_display_names.index(viz_name)] for viz_name in selected_viz]
if not st.button('Get Results'):
st.stop()
video_bytes = retrieve_results(selected_dataset, selected_sequence, selected_models, selected_metrics, selected_visualizations)
if video_bytes is None:
st.error("Error while generating video.")
st.stop()
st.video(video_bytes)
|