File size: 9,923 Bytes
8c31b90
95312c3
cebe383
8c31b90
df9abf4
 
213154b
df9abf4
 
 
 
 
 
8c31b90
df9abf4
 
 
 
8c31b90
df9abf4
58538bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ce8504
58538bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ff595d
58538bf
d123883
 
 
 
 
58538bf
 
 
7ce8504
58538bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
026b32c
 
 
 
 
 
 
58538bf
 
 
 
 
 
 
 
 
 
026b32c
df9abf4
 
8b5d61a
8c31b90
 
 
 
 
 
 
 
0d0ab89
df9abf4
8c31b90
 
 
0d0ab89
df9abf4
8c31b90
 
 
 
df9abf4
8c31b90
df9abf4
 
8c31b90
 
df9abf4
 
8c31b90
df9abf4
8f43f06
abcfaf7
8f43f06
 
 
 
 
 
 
 
8c31b90
 
df9abf4
8f43f06
 
abcfaf7
df9abf4
c103e03
 
 
 
 
 
 
abcfaf7
df9abf4
 
8c31b90
 
58538bf
 
b0547a1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import subprocess
import glob

import streamlit as st

from utils import get_configs, get_display_names, get_path_for_viz, get_text_str

# st.header("EVREAL  - Event-based Video Reconstruction Evaluation and Analysis Library")
#
# paper_link = "https://arxiv.org/abs/2305.00434"
# code_link = "https://github.com/ercanburak/EVREAL"
# page_link = "https://ercanburak.github.io/evreal.html"
# instructions_video = "https://www.youtube.com/watch?v="
#
# st.markdown("Paper: " + paper_link, unsafe_allow_html=True)
# st.markdown("Code: " + paper_link, unsafe_allow_html=True)
# st.markdown("Page: " + paper_link, unsafe_allow_html=True)
# st.markdown("Please see this video for instructions on how to use this tool: " + instructions_video, unsafe_allow_html=True)


@st.cache_data(show_spinner="Retrieving results...")
def retrieve_results(selected_dataset, selected_sequence, selected_models, selected_metrics, selected_visualizations):
    gt_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'gt_only']
    model_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'model_only']
    both_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'both']

    recon_viz = {"name": "recon", "display_name": "Reconstruction", "viz_type": "both", "gt_type": "frame"}
    ground_truth = {"name": "gt", "display_name": "Ground Truth", "model_id": "groundtruth"}

    model_viz = [recon_viz] + both_viz + selected_metrics + model_only_viz
    num_model_rows = len(model_viz)

    gt_viz = []
    if selected_dataset['has_frames']:
        gt_viz.append(recon_viz)
        gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'frame'])
        gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'frame'])

    gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'event'])
    gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'event'])

    num_gt_rows = len(gt_viz)
    num_rows = max(num_model_rows, num_gt_rows)

    # total_videos_needed = len(selected_models) * num_model_rows + num_gt_rows

    if len(gt_viz) > 0:
        selected_models.append(ground_truth)

    padding = 2
    font_size = 20
    num_cols = len(selected_models)
    crop_str = "crop=trunc(iw/2)*2-2:trunc(ih/2)*2,"
    pad_str = "pad=ceil(iw/2)*2+{}:ceil(ih/2)*2+{}:{}:{}:white".format(padding*2, padding*2, padding, padding)
    num_elements = num_rows * num_cols

    # remove previous temp data
    files = glob.glob('temp_data/temp_*.mp4')
    for f in files:
        os.remove(f)

    w = selected_dataset["width"]
    h = selected_dataset["height"]
    input_filter_parts = []
    xstack_input_parts = []
    layout_parts = []
    video_paths = []
    row_heights = [""]*num_rows
    gt_viz_indices = []
    if len(model_viz) > 1:
        left_pad = (font_size*0.7)*max([len(viz['display_name']) for viz in model_viz[1:]]) + padding*2
    else:
        left_pad = 0
    for row_idx in range(num_rows):
        for col_idx in range(num_cols):
            vid_idx = len(video_paths)
            # progress_bar.progress(float(vid_idx) / total_videos_needed)
            cur_model = selected_models[col_idx]
            if cur_model['name'] == "gt":
                if row_idx < len(gt_viz):
                    video_path = get_path_for_viz(base_data_dir, selected_dataset, selected_sequence, cur_model, gt_viz[row_idx])
                    if not os.path.isfile(video_path):
                        raise ValueError("Could not find video: " + video_path)
                    gt_viz_indices.append(vid_idx)
                else:
                    continue
            else:
                if row_idx < len(model_viz):
                    video_path = get_path_for_viz(base_data_dir, selected_dataset, selected_sequence, cur_model, model_viz[row_idx])
                    if not os.path.isfile(video_path):
                        raise ValueError("Could not find video: " + video_path)
                else:
                    continue

            if row_heights[row_idx] == "":
                row_heights[row_idx] = "h{}".format(vid_idx)
            if row_idx == 0:
                pad_height = font_size+padding*2
                pad_txt_str = ",pad={}:{}:0:{}:white".format(w+padding*2, h+font_size+padding*4, pad_height)
                text_str = get_text_str(pad_height, w, cur_model['display_name'], font_size)
                pad_txt_str = pad_txt_str + "," + text_str
            elif col_idx == 0:
                pad_txt_str = ",pad={}:ih:{}:0:white".format(w + left_pad + padding * 2, left_pad)
                if len(model_viz) > row_idx > 0:
                    text_str = get_text_str("h", left_pad, model_viz[row_idx]['display_name'], font_size)
                    pad_txt_str = pad_txt_str + "," + text_str
            else:
                pad_txt_str = ""

            input_filter_part = "[{}:v]scale={}:-1,{}{}{}[v{}]".format(vid_idx, w, crop_str, pad_str, pad_txt_str, vid_idx)
            input_filter_parts.append(input_filter_part)
            xstack_input_part = "[v{}]".format(vid_idx)
            xstack_input_parts.append(xstack_input_part)
            video_paths.append(video_path)
            if row_idx == 0 or col_idx > 0:
                layout_w_parts = [str(left_pad)] + ["w{}".format(i) for i in range(col_idx)]
                layout_w = "+".join(layout_w_parts)
            else:
                layout_w = "+".join(["w{}".format(i) for i in range(col_idx)]) if col_idx > 0 else "0"
            if cur_model['name'] == "gt":
                layout_h = "+".join(["h{}".format(i) for i in gt_viz_indices[:-1]]) if row_idx > 0 else "0"
            else:
                layout_h = "+".join(row_heights[:row_idx]) if row_idx > 0 else "0"
            layout_part = layout_w + "_" + layout_h
            layout_parts.append(layout_part)

    inputs_str = " ".join(["-i " + video_path for video_path in video_paths])
    num_inputs = len(video_paths)

    input_scaling_str = ";".join(input_filter_parts)
    xstack_input_str = "".join(xstack_input_parts)
    layout_str = "|".join(layout_parts)

    # opt = "-c:v libx264 -preset veryslow -crf 18 -c:a copy"
    opt = ""
    # opt_fill = ":fill=black"
    opt_fill = ":fill=white"
    # opt_fill = ""
    if num_inputs > 1:
        ffmpeg_command_str = "ffmpeg -y " + inputs_str + " -filter_complex \"" + input_scaling_str + ";" + xstack_input_str + "xstack=inputs=" + str(num_inputs) + ":layout=" + layout_str + opt_fill + "\"" + opt + " output.mp4"
    else:
        # remove last paranthesis
        idx = input_scaling_str.rfind("[")
        input_scaling_str = input_scaling_str[:idx]
        ffmpeg_command_str = "ffmpeg -y " + inputs_str + " -filter_complex \"" + input_scaling_str + "\"" + opt + " output.mp4"
    print(ffmpeg_command_str)
    ret = subprocess.call(ffmpeg_command_str, shell=True)

    if ret != 0:
        return None

    video_file = open('output.mp4', 'rb')
    video_bytes = video_file.read()
    return video_bytes


st.title("Result Analysis Tool")

base_data_dir = "data"
dataset_cfg_path = os.path.join("cfg", "dataset")
model_cfg_path = os.path.join("cfg", "model")
metric_cfg_path = os.path.join("cfg", "metric")
viz_cfg_path = os.path.join("cfg", "viz")

datasets = get_configs(dataset_cfg_path)
models = get_configs(model_cfg_path)
metrics = get_configs(metric_cfg_path)
visualizations = get_configs(viz_cfg_path)

dataset_display_names = get_display_names(datasets)
model_display_names = get_display_names(models)
metric_display_names = get_display_names(metrics)
viz_display_names = get_display_names(visualizations)

assert len(set(dataset_display_names)) == len(dataset_display_names), "Dataset display names are not unique"
assert len(set(model_display_names)) == len(model_display_names), "Model display names are not unique"
assert len(set(metric_display_names)) == len(metric_display_names), "Metric display names are not unique"
assert len(set(viz_display_names)) == len(viz_display_names), "Viz display names are not unique"

col1, col2 = st.columns(2)

with col1:
    selected_dataset_name = st.selectbox('Select dataset', options=dataset_display_names)
    selected_dataset = [dataset for dataset in datasets if dataset['display_name'] == selected_dataset_name][0]

with col2:
    selected_sequence = st.selectbox('Select sequence', options=selected_dataset["sequences"].keys())

selected_model_names = st.multiselect('Select multiple methods to compare', model_display_names)
selected_models = [models[model_display_names.index(model_name)] for model_name in selected_model_names]

disable_metrics = len(selected_models) == 0

if disable_metrics:
    tooltip_str = "Select at least one method to enable metric selection"
else:
    tooltip_str = ""

usable_metrics = [metric for metric in metrics if metric['no_ref'] == selected_dataset['no_ref']]
usable_metric_display_names = get_display_names(usable_metrics)

selected_metric_names = st.multiselect('Select metrics to display', usable_metric_display_names,
                                       disabled=disable_metrics, help=tooltip_str)
selected_metrics = [metrics[metric_display_names.index(metric_name)] for metric_name in selected_metric_names]

if not selected_dataset['has_frames']:
    usable_viz = [viz for viz in visualizations if viz['gt_type'] != 'frame']
else:
    usable_viz = visualizations
usable_viz_display_names = get_display_names(usable_viz)

selected_viz = st.multiselect('Select other visualizations to display', usable_viz_display_names)
selected_visualizations = [visualizations[viz_display_names.index(viz_name)] for viz_name in selected_viz]

if not st.button('Get Results'):
    st.stop()

video_bytes = retrieve_results(selected_dataset, selected_sequence, selected_models, selected_metrics, selected_visualizations)
if video_bytes is None:
    st.error("Error while generating video.")
    st.stop()

st.video(video_bytes)