import gradio as gr import spaces import torch from ultralytics import YOLO from PIL import Image import supervision as sv import numpy as np @spaces.GPU def yolov8_inference( image, image_size, conf_threshold, iou_threshold, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO('erax_nsfw_v1.onnx') # set model parameters model.overrides['conf'] = conf_threshold # NMS confidence threshold model.overrides['iou'] = iou_threshold # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image results = model([image]) for result in results: annotated_image = result.orig_img.copy() h, w = annotated_image.shape[:2] anchor = h if h > w else w # make_love class will cover entire context !!! # selected_classes = [0, 1, 2, 3, 4, 5] # all classes selected_classes = [0, 2, 3, 4, 5] # hidden make_love class detections = sv.Detections.from_ultralytics(result) detections = detections[np.isin(detections.class_id, selected_classes)] # box_annotator = sv.BoxAnnotator() # annotated_image = box_annotator.annotate( # annotated_image, # detections=detections # ) # blur_annotator = sv.BlurAnnotator(kernel_size=anchor/50) # annotated_image = blur_annotator.annotate( # annotated_image.copy(), # detections=detections # ) label_annotator = sv.LabelAnnotator(text_color=sv.Color.BLACK, text_position=sv.Position.CENTER, text_scale=anchor/1700) annotated_image = label_annotator.annotate( annotated_image, detections=detections ) pixelate_annotator = sv.PixelateAnnotator(pixel_size=anchor/50) annotated_image = pixelate_annotator.annotate( scene=annotated_image.copy(), detections=detections ) # sv.plot_image(annotated_image, size=(10, 10)) # results = model.predict(image, imgsz=image_size) # render = render_result(model=model, image=image, result=results[0]) return annotated_image[:, :, ::-1] inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Slider(minimum=320, maximum=1280, value=640, step=320, label="Image Size"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.Image(type="filepath", label="Output Image") title = "State-of-the-Art YOLO Models for Object detection" # examples = [['demo_01.jpg', 'yolov8n', 640, 0.25, 0.45], ['demo_02.jpg', 'yolov8l', 640, 0.25, 0.45], ['demo_03.jpg', 'yolov8x', 1280, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, # examples=examples, # cache_examples=True, ) demo_app.launch(debug=True)