Spaces:
Runtime error
Runtime error
| # =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. =========== | |
| # Licensed under the Apache License, Version 2.0 (the “License”); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an “AS IS” BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. =========== | |
| from abc import ABC, abstractmethod | |
| from typing import Any, Dict | |
| import openai | |
| import tiktoken | |
| from camel.typing import ModelType | |
| from chatdev.utils import log_and_print_online | |
| class ModelBackend(ABC): | |
| r"""Base class for different model backends. | |
| May be OpenAI API, a local LLM, a stub for unit tests, etc.""" | |
| def run(self, *args, **kwargs) -> Dict[str, Any]: | |
| r"""Runs the query to the backend model. | |
| Raises: | |
| RuntimeError: if the return value from OpenAI API | |
| is not a dict that is expected. | |
| Returns: | |
| Dict[str, Any]: All backends must return a dict in OpenAI format. | |
| """ | |
| pass | |
| class OpenAIModel(ModelBackend): | |
| r"""OpenAI API in a unified ModelBackend interface.""" | |
| def __init__(self, model_type: ModelType, model_config_dict: Dict) -> None: | |
| super().__init__() | |
| self.model_type = model_type | |
| self.model_config_dict = model_config_dict | |
| def run(self, *args, **kwargs) -> Dict[str, Any]: | |
| string = "\n".join([message["content"] for message in kwargs["messages"]]) | |
| encoding = tiktoken.encoding_for_model(self.model_type.value) | |
| num_prompt_tokens = len(encoding.encode(string)) | |
| gap_between_send_receive = 50 # known issue | |
| num_prompt_tokens += gap_between_send_receive | |
| num_max_token_map = { | |
| "gpt-3.5-turbo": 4096, | |
| "gpt-3.5-turbo-16k": 16384, | |
| "gpt-3.5-turbo-0613": 4096, | |
| "gpt-3.5-turbo-16k-0613": 16384, | |
| "gpt-4": 8192, | |
| "gpt-4-0613": 8192, | |
| "gpt-4-32k": 32768, | |
| } | |
| num_max_token = num_max_token_map[self.model_type.value] | |
| num_max_completion_tokens = num_max_token - num_prompt_tokens | |
| self.model_config_dict['max_tokens'] = num_max_completion_tokens | |
| response = openai.ChatCompletion.create(*args, **kwargs, | |
| model=self.model_type.value, | |
| **self.model_config_dict) | |
| log_and_print_online( | |
| "**[OpenAI_Usage_Info Receive]**\nprompt_tokens: {}\ncompletion_tokens: {}\ntotal_tokens: {}\n".format( | |
| response["usage"]["prompt_tokens"], response["usage"]["completion_tokens"], | |
| response["usage"]["total_tokens"])) | |
| if not isinstance(response, Dict): | |
| raise RuntimeError("Unexpected return from OpenAI API") | |
| return response | |
| class StubModel(ModelBackend): | |
| r"""A dummy model used for unit tests.""" | |
| def __init__(self, *args, **kwargs) -> None: | |
| super().__init__() | |
| def run(self, *args, **kwargs) -> Dict[str, Any]: | |
| ARBITRARY_STRING = "Lorem Ipsum" | |
| return dict( | |
| id="stub_model_id", | |
| usage=dict(), | |
| choices=[ | |
| dict(finish_reason="stop", | |
| message=dict(content=ARBITRARY_STRING, role="assistant")) | |
| ], | |
| ) | |
| class ModelFactory: | |
| r"""Factory of backend models. | |
| Raises: | |
| ValueError: in case the provided model type is unknown. | |
| """ | |
| def create(model_type: ModelType, model_config_dict: Dict) -> ModelBackend: | |
| default_model_type = ModelType.GPT_3_5_TURBO | |
| if model_type in { | |
| ModelType.GPT_3_5_TURBO, ModelType.GPT_4, ModelType.GPT_4_32k, | |
| None | |
| }: | |
| model_class = OpenAIModel | |
| elif model_type == ModelType.STUB: | |
| model_class = StubModel | |
| else: | |
| raise ValueError("Unknown model") | |
| if model_type is None: | |
| model_type = default_model_type | |
| # log_and_print_online("Model Type: {}".format(model_type)) | |
| inst = model_class(model_type, model_config_dict) | |
| return inst | |