Spaces:
Configuration error
Configuration error
englert
commited on
Commit
·
ba93a7e
1
Parent(s):
e839e64
update app.py #3
Browse files- app.py +1 -1
- fastdist2.py +1 -290
- requirements.txt +1 -0
app.py
CHANGED
@@ -90,4 +90,4 @@ demo = gr.Interface(
|
|
90 |
gr.components.Number(label="Downsample size")],
|
91 |
outputs=gr.components.File(label="Zip"))
|
92 |
|
93 |
-
demo.launch()
|
|
|
90 |
gr.components.Number(label="Downsample size")],
|
91 |
outputs=gr.components.File(label="Zip"))
|
92 |
|
93 |
+
demo.launch(debug = True)
|
fastdist2.py
CHANGED
@@ -1,144 +1,9 @@
|
|
1 |
-
import math
|
2 |
-
|
3 |
import numpy as np
|
4 |
-
from numba import jit, prange
|
5 |
|
6 |
|
7 |
# https://github.com/talboger/fastdist
|
8 |
|
9 |
-
@jit(nopython=True, fastmath=True)
|
10 |
-
def cosine(u, v, w=None):
|
11 |
-
"""
|
12 |
-
:purpose:
|
13 |
-
Computes the cosine similarity between two 1D arrays
|
14 |
-
Unlike scipy's cosine distance, this returns similarity, which is 1 - distance
|
15 |
-
|
16 |
-
:params:
|
17 |
-
u, v : input arrays, both of shape (n,)
|
18 |
-
w : weights at each index of u and v. array of shape (n,)
|
19 |
-
if no w is set, it is initialized as an array of ones
|
20 |
-
such that it will have no impact on the output
|
21 |
-
|
22 |
-
:returns:
|
23 |
-
cosine : float, the cosine similarity between u and v
|
24 |
-
|
25 |
-
:example:
|
26 |
-
>>> from fastdist import fastdist
|
27 |
-
>>> import numpy as np
|
28 |
-
>>> u, v, w = np.random.RandomState(seed=0).rand(10000, 3).T
|
29 |
-
>>> fastdist.cosine(u, v, w)
|
30 |
-
0.7495065944399267
|
31 |
-
"""
|
32 |
-
n = len(u)
|
33 |
-
num = 0
|
34 |
-
u_norm, v_norm = 0, 0
|
35 |
-
for i in range(n):
|
36 |
-
num += u[i] * v[i] * w[i]
|
37 |
-
u_norm += abs(u[i]) ** 2 * w[i]
|
38 |
-
v_norm += abs(v[i]) ** 2 * w[i]
|
39 |
-
|
40 |
-
denom = (u_norm * v_norm) ** (1 / 2)
|
41 |
-
return num / denom
|
42 |
-
|
43 |
-
|
44 |
-
@jit(nopython=True, fastmath=True)
|
45 |
-
def cosine_vector_to_matrix(u, m):
|
46 |
-
"""
|
47 |
-
:purpose:
|
48 |
-
Computes the cosine similarity between a 1D array and rows of a matrix
|
49 |
-
|
50 |
-
:params:
|
51 |
-
u : input vector of shape (n,)
|
52 |
-
m : input matrix of shape (m, n)
|
53 |
-
|
54 |
-
:returns:
|
55 |
-
cosine vector : np.array, of shape (m,) vector containing cosine similarity between u
|
56 |
-
and the rows of m
|
57 |
-
|
58 |
-
:example:
|
59 |
-
>>> from fastdist import fastdist
|
60 |
-
>>> import numpy as np
|
61 |
-
>>> u = np.random.RandomState(seed=0).rand(10)
|
62 |
-
>>> m = np.random.RandomState(seed=0).rand(100, 10)
|
63 |
-
>>> fastdist.cosine_vector_to_matrix(u, m)
|
64 |
-
(returns an array of shape (100,))
|
65 |
-
"""
|
66 |
-
norm = 0
|
67 |
-
for i in range(len(u)):
|
68 |
-
norm += abs(u[i]) ** 2
|
69 |
-
u = u / norm ** (1 / 2)
|
70 |
-
for i in range(m.shape[0]):
|
71 |
-
norm = 0
|
72 |
-
for j in range(len(m[i])):
|
73 |
-
norm += abs(m[i][j]) ** 2
|
74 |
-
m[i] = m[i] / norm ** (1 / 2)
|
75 |
-
return np.dot(u, m.T)
|
76 |
-
|
77 |
-
|
78 |
-
@jit(nopython=True, fastmath=True)
|
79 |
-
def cosine_matrix_to_matrix(a, b):
|
80 |
-
"""
|
81 |
-
:purpose:
|
82 |
-
Computes the cosine similarity between the rows of two matrices
|
83 |
-
|
84 |
-
:params:
|
85 |
-
a, b : input matrices of shape (m, n) and (k, n)
|
86 |
-
the matrices must share a common dimension at index 1
|
87 |
-
|
88 |
-
:returns:
|
89 |
-
cosine matrix : np.array, an (m, k) array of the cosine similarity
|
90 |
-
between the rows of a and b
|
91 |
-
|
92 |
-
:example:
|
93 |
-
>>> from fastdist import fastdist
|
94 |
-
>>> import numpy as np
|
95 |
-
>>> a = np.random.RandomState(seed=0).rand(10, 50)
|
96 |
-
>>> b = np.random.RandomState(seed=0).rand(100, 50)
|
97 |
-
>>> fastdist.cosine_matrix_to_matrix(a, b)
|
98 |
-
(returns an array of shape (10, 100))
|
99 |
-
"""
|
100 |
-
for i in range(a.shape[0]):
|
101 |
-
norm = 0
|
102 |
-
for j in range(len(a[i])):
|
103 |
-
norm += abs(a[i][j]) ** 2
|
104 |
-
a[i] = a[i] / norm ** (1 / 2)
|
105 |
-
for i in range(b.shape[0]):
|
106 |
-
norm = 0
|
107 |
-
for j in range(len(b[i])):
|
108 |
-
norm += abs(b[i][j]) ** 2
|
109 |
-
b[i] = b[i] / norm ** (1 / 2)
|
110 |
-
return np.dot(a, b.T)
|
111 |
-
|
112 |
-
|
113 |
-
@jit(nopython=True, fastmath=True)
|
114 |
-
def euclidean(u, v):
|
115 |
-
"""
|
116 |
-
:purpose:
|
117 |
-
Computes the Euclidean distance between two 1D arrays
|
118 |
-
|
119 |
-
:params:
|
120 |
-
u, v : input arrays, both of shape (n,)
|
121 |
-
w : weights at each index of u and v. array of shape (n,)
|
122 |
-
if no w is set, it is initialized as an array of ones
|
123 |
-
such that it will have no impact on the output
|
124 |
-
|
125 |
-
:returns:
|
126 |
-
euclidean : float, the Euclidean distance between u and v
|
127 |
-
|
128 |
-
:example:
|
129 |
-
>>> from fastdist import fastdist
|
130 |
-
>>> import numpy as np
|
131 |
-
>>> u, v, w = np.random.RandomState(seed=0).rand(10000, 3).T
|
132 |
-
>>> fastdist.euclidean(u, v, w)
|
133 |
-
28.822558591834163
|
134 |
-
"""
|
135 |
-
n = len(u)
|
136 |
-
dist = 0
|
137 |
-
for i in range(n):
|
138 |
-
dist += abs(u[i] - v[i]) ** 2
|
139 |
-
return dist ** (1 / 2)
|
140 |
-
|
141 |
-
|
142 |
@jit(nopython=True, fastmath=True)
|
143 |
def euclidean_vector_to_matrix_distance(u, m):
|
144 |
"""
|
@@ -176,157 +41,3 @@ def euclidean_vector_to_matrix_distance(u, m):
|
|
176 |
out[i] = dist ** (1 / 2)
|
177 |
|
178 |
return out
|
179 |
-
|
180 |
-
|
181 |
-
@cuda.jit
|
182 |
-
def gpu_kernel_euclidean_vector_to_matrix_distance(u, m, u_dim0, m_dim0, out):
|
183 |
-
# Thread id in a 1D block
|
184 |
-
tx = cuda.threadIdx.x
|
185 |
-
# Block id in a 1D grid
|
186 |
-
ty = cuda.blockIdx.x
|
187 |
-
# Block width, i.e. number of threads per block
|
188 |
-
bw = cuda.blockDim.x
|
189 |
-
# Compute flattened index inside the array
|
190 |
-
pos = tx + ty * bw
|
191 |
-
if pos < m_dim0: # Check array boundaries
|
192 |
-
dist = 0
|
193 |
-
for l in range(u_dim0):
|
194 |
-
d = abs(u[l] - m[pos][l])
|
195 |
-
dist += d * d
|
196 |
-
out[pos] = dist ** (1 / 2)
|
197 |
-
|
198 |
-
|
199 |
-
def euclidean_vector_to_matrix_distance_gpu(u, m):
|
200 |
-
m_dim0 = m.shape[0]
|
201 |
-
u_dim0 = u.shape[0]
|
202 |
-
out = np.zeros((m_dim0), dtype=np.float32)
|
203 |
-
|
204 |
-
threadsperblock = 16
|
205 |
-
blockspergrid = (m_dim0 + (threadsperblock - 1)) // threadsperblock
|
206 |
-
gpu_kernel_euclidean_vector_to_matrix_distance[blockspergrid, threadsperblock](u, m, u_dim0, m_dim0, out)
|
207 |
-
|
208 |
-
return out
|
209 |
-
|
210 |
-
|
211 |
-
# https://numba.readthedocs.io/en/stable/cuda/examples.html
|
212 |
-
@cuda.jit
|
213 |
-
def gpu_kernel_euclidean_matrix_to_matrix_distance_fast(A, B, C):
|
214 |
-
TPB = 16
|
215 |
-
|
216 |
-
# Define an array in the shared memory
|
217 |
-
# The size and type of the arrays must be known at compile time
|
218 |
-
sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)
|
219 |
-
|
220 |
-
sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)
|
221 |
-
|
222 |
-
x, y = cuda.grid(2)
|
223 |
-
|
224 |
-
tx = cuda.threadIdx.x
|
225 |
-
|
226 |
-
ty = cuda.threadIdx.y
|
227 |
-
|
228 |
-
bpg = cuda.gridDim.x # blocks per grid
|
229 |
-
|
230 |
-
# Each thread computes one element in the result matrix.
|
231 |
-
|
232 |
-
# The dot product is chunked into dot products of TPB-long vectors.
|
233 |
-
|
234 |
-
tmp = float32(0.)
|
235 |
-
|
236 |
-
for i in range(bpg):
|
237 |
-
|
238 |
-
# Preload data into shared memory
|
239 |
-
|
240 |
-
sA[ty, tx] = 0
|
241 |
-
|
242 |
-
sB[ty, tx] = 0
|
243 |
-
|
244 |
-
if y < A.shape[0] and (tx + i * TPB) < A.shape[1]:
|
245 |
-
sA[ty, tx] = A[y, tx + i * TPB]
|
246 |
-
|
247 |
-
if x < B.shape[1] and (ty + i * TPB) < B.shape[0]:
|
248 |
-
sB[ty, tx] = B[ty + i * TPB, x]
|
249 |
-
|
250 |
-
# Wait until all threads finish preloading
|
251 |
-
|
252 |
-
cuda.syncthreads()
|
253 |
-
|
254 |
-
# Computes partial product on the shared memory
|
255 |
-
|
256 |
-
for j in range(TPB):
|
257 |
-
d = abs(sA[ty, j] - sB[j, tx])
|
258 |
-
tmp += d * d
|
259 |
-
# Wait until all threads finish computing
|
260 |
-
|
261 |
-
cuda.syncthreads()
|
262 |
-
|
263 |
-
if y < C.shape[0] and x < C.shape[1]:
|
264 |
-
C[y, x] = tmp ** (1 / 2)
|
265 |
-
|
266 |
-
|
267 |
-
def euclidean_matrix_to_matrix_distance_gpu_fast(u, m):
|
268 |
-
u_dim0 = u.shape[0]
|
269 |
-
m_dim1 = m.shape[1]
|
270 |
-
|
271 |
-
# vec_dim = u.shape[1]
|
272 |
-
# assert vec_dim == m.shape[1]
|
273 |
-
out = np.zeros((u_dim0, m_dim1), dtype=np.float32)
|
274 |
-
|
275 |
-
threadsperblock = (16, 16)
|
276 |
-
grid_y_max = max(u.shape[0], m.shape[0])
|
277 |
-
grid_x_max = max(u.shape[1], m.shape[1])
|
278 |
-
blockspergrid_x = math.ceil(grid_x_max / threadsperblock[0])
|
279 |
-
blockspergrid_y = math.ceil(grid_y_max / threadsperblock[1])
|
280 |
-
|
281 |
-
blockspergrid = (blockspergrid_x, blockspergrid_y)
|
282 |
-
|
283 |
-
u_d = cuda.to_device(u)
|
284 |
-
m_d = cuda.to_device(m)
|
285 |
-
out_d = cuda.to_device(out)
|
286 |
-
|
287 |
-
gpu_kernel_euclidean_matrix_to_matrix_distance_fast[blockspergrid, threadsperblock](u_d, m_d, out_d)
|
288 |
-
out = out_d.copy_to_host()
|
289 |
-
return out
|
290 |
-
|
291 |
-
|
292 |
-
@jit(cache=True, nopython=True, parallel=True, fastmath=True, boundscheck=False, nogil=True)
|
293 |
-
def euclidean_matrix_to_matrix_distance(a, b):
|
294 |
-
"""
|
295 |
-
:purpose:
|
296 |
-
Computes the distance between the rows of two matrices using any given metric
|
297 |
-
|
298 |
-
:params:
|
299 |
-
a, b : input matrices either of shape (m, n) and (k, n)
|
300 |
-
the matrices must share a common dimension at index 1
|
301 |
-
metric : the function used to calculate the distance
|
302 |
-
metric_name : str of the function name. this is only used for
|
303 |
-
the if statement because cosine similarity has its
|
304 |
-
own function
|
305 |
-
|
306 |
-
:returns:
|
307 |
-
distance matrix : np.array, an (m, k) array of the distance
|
308 |
-
between the rows of a and b
|
309 |
-
|
310 |
-
:example:
|
311 |
-
>>> from fastdist import fastdist
|
312 |
-
>>> import numpy as np
|
313 |
-
>>> a = np.random.RandomState(seed=0).rand(10, 50)
|
314 |
-
>>> b = np.random.RandomState(seed=0).rand(100, 50)
|
315 |
-
>>> fastdist.matrix_to_matrix_distance(a, b, fastdist.cosine, "cosine")
|
316 |
-
(returns an array of shape (10, 100))
|
317 |
-
|
318 |
-
:note:
|
319 |
-
the cosine similarity uses its own function, cosine_matrix_to_matrix.
|
320 |
-
this is because normalizing the rows and then taking the dot product
|
321 |
-
of the two matrices heavily optimizes the computation. the other similarity
|
322 |
-
metrics do not have such an optimization, so we loop through them
|
323 |
-
"""
|
324 |
-
n, m = a.shape[0], b.shape[0]
|
325 |
-
out = np.zeros((n, m), dtype=np.float32)
|
326 |
-
for i in prange(n):
|
327 |
-
for j in range(m):
|
328 |
-
dist = 0
|
329 |
-
for l in range(len(a[i])):
|
330 |
-
dist += abs(a[i][l] - b[j][l]) ** 2
|
331 |
-
out[i][j] = dist ** (1 / 2)
|
332 |
-
return out
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
from numba import jit, prange
|
3 |
|
4 |
|
5 |
# https://github.com/talboger/fastdist
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
@jit(nopython=True, fastmath=True)
|
8 |
def euclidean_vector_to_matrix_distance(u, m):
|
9 |
"""
|
|
|
41 |
out[i] = dist ** (1 / 2)
|
42 |
|
43 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -5,3 +5,4 @@ numpy
|
|
5 |
opencv-python
|
6 |
umap-learn
|
7 |
numba
|
|
|
|
5 |
opencv-python
|
6 |
umap-learn
|
7 |
numba
|
8 |
+
gradio
|