Spaces:
Configuration error

File size: 9,958 Bytes
ce0d4fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import math

import numpy as np
from numba import jit, prange, cuda, float32


# https://github.com/talboger/fastdist

@jit(nopython=True, fastmath=True)
def cosine(u, v, w=None):
    """
    :purpose:
    Computes the cosine similarity between two 1D arrays
    Unlike scipy's cosine distance, this returns similarity, which is 1 - distance

    :params:
    u, v   : input arrays, both of shape (n,)
    w      : weights at each index of u and v. array of shape (n,)
             if no w is set, it is initialized as an array of ones
             such that it will have no impact on the output

    :returns:
    cosine  : float, the cosine similarity between u and v

    :example:
    >>> from fastdist import fastdist
    >>> import numpy as np
    >>> u, v, w = np.random.RandomState(seed=0).rand(10000, 3).T
    >>> fastdist.cosine(u, v, w)
    0.7495065944399267
    """
    n = len(u)
    num = 0
    u_norm, v_norm = 0, 0
    for i in range(n):
        num += u[i] * v[i] * w[i]
        u_norm += abs(u[i]) ** 2 * w[i]
        v_norm += abs(v[i]) ** 2 * w[i]

    denom = (u_norm * v_norm) ** (1 / 2)
    return num / denom


@jit(nopython=True, fastmath=True)
def cosine_vector_to_matrix(u, m):
    """
    :purpose:
    Computes the cosine similarity between a 1D array and rows of a matrix

    :params:
    u      : input vector of shape (n,)
    m      : input matrix of shape (m, n)

    :returns:
    cosine vector  : np.array, of shape (m,) vector containing cosine similarity between u
                     and the rows of m

    :example:
    >>> from fastdist import fastdist
    >>> import numpy as np
    >>> u = np.random.RandomState(seed=0).rand(10)
    >>> m = np.random.RandomState(seed=0).rand(100, 10)
    >>> fastdist.cosine_vector_to_matrix(u, m)
    (returns an array of shape (100,))
    """
    norm = 0
    for i in range(len(u)):
        norm += abs(u[i]) ** 2
    u = u / norm ** (1 / 2)
    for i in range(m.shape[0]):
        norm = 0
        for j in range(len(m[i])):
            norm += abs(m[i][j]) ** 2
        m[i] = m[i] / norm ** (1 / 2)
    return np.dot(u, m.T)


@jit(nopython=True, fastmath=True)
def cosine_matrix_to_matrix(a, b):
    """
    :purpose:
    Computes the cosine similarity between the rows of two matrices

    :params:
    a, b   : input matrices of shape (m, n) and (k, n)
             the matrices must share a common dimension at index 1

    :returns:
    cosine matrix  : np.array, an (m, k) array of the cosine similarity
                     between the rows of a and b

    :example:
    >>> from fastdist import fastdist
    >>> import numpy as np
    >>> a = np.random.RandomState(seed=0).rand(10, 50)
    >>> b = np.random.RandomState(seed=0).rand(100, 50)
    >>> fastdist.cosine_matrix_to_matrix(a, b)
    (returns an array of shape (10, 100))
    """
    for i in range(a.shape[0]):
        norm = 0
        for j in range(len(a[i])):
            norm += abs(a[i][j]) ** 2
        a[i] = a[i] / norm ** (1 / 2)
    for i in range(b.shape[0]):
        norm = 0
        for j in range(len(b[i])):
            norm += abs(b[i][j]) ** 2
        b[i] = b[i] / norm ** (1 / 2)
    return np.dot(a, b.T)


@jit(nopython=True, fastmath=True)
def euclidean(u, v):
    """
    :purpose:
    Computes the Euclidean distance between two 1D arrays

    :params:
    u, v   : input arrays, both of shape (n,)
    w      : weights at each index of u and v. array of shape (n,)
             if no w is set, it is initialized as an array of ones
             such that it will have no impact on the output

    :returns:
    euclidean : float, the Euclidean distance between u and v

    :example:
    >>> from fastdist import fastdist
    >>> import numpy as np
    >>> u, v, w = np.random.RandomState(seed=0).rand(10000, 3).T
    >>> fastdist.euclidean(u, v, w)
    28.822558591834163
    """
    n = len(u)
    dist = 0
    for i in range(n):
        dist += abs(u[i] - v[i]) ** 2
    return dist ** (1 / 2)


@jit(nopython=True, fastmath=True)
def euclidean_vector_to_matrix_distance(u, m):
    """
    :purpose:
    Computes the distance between a vector and the rows of a matrix using any given metric

    :params:
    u      : input vector of shape (n,)
    m      : input matrix of shape (m, n)

    distance vector  : np.array, of shape (m,) vector containing the distance between u
                       and the rows of m

    :example:
    >>> from fastdist import fastdist
    >>> import numpy as np
    >>> u = np.random.RandomState(seed=0).rand(10)
    >>> m = np.random.RandomState(seed=0).rand(100, 10)
    >>> fastdist.vector_to_matrix_distance(u, m)
    (returns an array of shape (100,))

    :note:
    the cosine similarity uses its own function, cosine_vector_to_matrix.
    this is because normalizing the rows and then taking the dot product
    of the vector and matrix heavily optimizes the computation. the other similarity
    metrics do not have such an optimization, so we loop through them
    """

    n = m.shape[0]
    out = np.zeros((n), dtype=np.float32)
    for i in prange(n):
        dist = 0
        for l in range(len(u)):
            dist += abs(u[l] - m[i][l]) ** 2
        out[i] = dist ** (1 / 2)

    return out


@cuda.jit
def gpu_kernel_euclidean_vector_to_matrix_distance(u, m, u_dim0, m_dim0, out):
    # Thread id in a 1D block
    tx = cuda.threadIdx.x
    # Block id in a 1D grid
    ty = cuda.blockIdx.x
    # Block width, i.e. number of threads per block
    bw = cuda.blockDim.x
    # Compute flattened index inside the array
    pos = tx + ty * bw
    if pos < m_dim0:  # Check array boundaries
        dist = 0
        for l in range(u_dim0):
            d = abs(u[l] - m[pos][l])
            dist += d * d
        out[pos] = dist ** (1 / 2)


def euclidean_vector_to_matrix_distance_gpu(u, m):
    m_dim0 = m.shape[0]
    u_dim0 = u.shape[0]
    out = np.zeros((m_dim0), dtype=np.float32)

    threadsperblock = 16
    blockspergrid = (m_dim0 + (threadsperblock - 1)) // threadsperblock
    gpu_kernel_euclidean_vector_to_matrix_distance[blockspergrid, threadsperblock](u, m, u_dim0, m_dim0, out)

    return out


# https://numba.readthedocs.io/en/stable/cuda/examples.html
@cuda.jit
def gpu_kernel_euclidean_matrix_to_matrix_distance_fast(A, B, C):
    TPB = 16

    # Define an array in the shared memory
    # The size and type of the arrays must be known at compile time
    sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

    sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

    x, y = cuda.grid(2)

    tx = cuda.threadIdx.x

    ty = cuda.threadIdx.y

    bpg = cuda.gridDim.x  # blocks per grid

    # Each thread computes one element in the result matrix.

    # The dot product is chunked into dot products of TPB-long vectors.

    tmp = float32(0.)

    for i in range(bpg):

        # Preload data into shared memory

        sA[ty, tx] = 0

        sB[ty, tx] = 0

        if y < A.shape[0] and (tx + i * TPB) < A.shape[1]:
            sA[ty, tx] = A[y, tx + i * TPB]

        if x < B.shape[1] and (ty + i * TPB) < B.shape[0]:
            sB[ty, tx] = B[ty + i * TPB, x]

        # Wait until all threads finish preloading

        cuda.syncthreads()

        # Computes partial product on the shared memory

        for j in range(TPB):
            d = abs(sA[ty, j] - sB[j, tx])
            tmp += d * d
        # Wait until all threads finish computing

        cuda.syncthreads()

    if y < C.shape[0] and x < C.shape[1]:
        C[y, x] = tmp ** (1 / 2)


def euclidean_matrix_to_matrix_distance_gpu_fast(u, m):
    u_dim0 = u.shape[0]
    m_dim1 = m.shape[1]

    # vec_dim = u.shape[1]
    # assert vec_dim == m.shape[1]
    out = np.zeros((u_dim0, m_dim1), dtype=np.float32)

    threadsperblock = (16, 16)
    grid_y_max = max(u.shape[0], m.shape[0])
    grid_x_max = max(u.shape[1], m.shape[1])
    blockspergrid_x = math.ceil(grid_x_max / threadsperblock[0])
    blockspergrid_y = math.ceil(grid_y_max / threadsperblock[1])

    blockspergrid = (blockspergrid_x, blockspergrid_y)

    u_d = cuda.to_device(u)
    m_d = cuda.to_device(m)
    out_d = cuda.to_device(out)

    gpu_kernel_euclidean_matrix_to_matrix_distance_fast[blockspergrid, threadsperblock](u_d, m_d, out_d)
    out = out_d.copy_to_host()
    return out


@jit(cache=True, nopython=True, parallel=True, fastmath=True, boundscheck=False, nogil=True)
def euclidean_matrix_to_matrix_distance(a, b):
    """
    :purpose:
    Computes the distance between the rows of two matrices using any given metric

    :params:
    a, b   : input matrices either of shape (m, n) and (k, n)
             the matrices must share a common dimension at index 1
    metric : the function used to calculate the distance
    metric_name : str of the function name. this is only used for
                  the if statement because cosine similarity has its
                  own function

    :returns:
    distance matrix  : np.array, an (m, k) array of the distance
                       between the rows of a and b

    :example:
    >>> from fastdist import fastdist
    >>> import numpy as np
    >>> a = np.random.RandomState(seed=0).rand(10, 50)
    >>> b = np.random.RandomState(seed=0).rand(100, 50)
    >>> fastdist.matrix_to_matrix_distance(a, b, fastdist.cosine, "cosine")
    (returns an array of shape (10, 100))

    :note:
    the cosine similarity uses its own function, cosine_matrix_to_matrix.
    this is because normalizing the rows and then taking the dot product
    of the two matrices heavily optimizes the computation. the other similarity
    metrics do not have such an optimization, so we loop through them
    """
    n, m = a.shape[0], b.shape[0]
    out = np.zeros((n, m), dtype=np.float32)
    for i in prange(n):
        for j in range(m):
            dist = 0
            for l in range(len(a[i])):
                dist += abs(a[i][l] - b[j][l]) ** 2
            out[i][j] = dist ** (1 / 2)
    return out