from transformers import AutoProcessor, AutoModelForCausalLM import spaces from PIL import Image import torch import re import numpy as np device = "cuda" if torch.cuda.is_available() else "cpu" import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) device = "cuda" if torch.cuda.is_available() else "cpu" fl_model = AutoModelForCausalLM.from_pretrained('thwri/CogFlorence-2.1-Large', trust_remote_code=True).eval().to("cpu").eval() fl_processor = AutoProcessor.from_pretrained('thwri/CogFlorence-2.1-Large', trust_remote_code=True) def modify_caption(caption: str) -> str: special_patterns = [ (r'the image is ', ''), (r'the image captures ', ''), (r'the image showcases ', ''), (r'the image shows ', ''), (r'the image ', ''), ] for pattern, replacement in special_patterns: caption = re.sub(pattern, replacement, caption, flags=re.IGNORECASE) caption = caption.replace('\n', '').replace('\r', '') caption = re.sub(r'(?<=[.,?!])(?=[^\s])', r' ', caption) caption = ' '.join(caption.strip().splitlines()) return caption @spaces.GPU(duration=30) def process_image(image): if isinstance(image, np.ndarray): image = Image.fromarray(image) elif isinstance(image, str): image = Image.open(image) if image.mode != "RGB": image = image.convert("RGB") prompt = "" fl_model.to(device) inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device) generated_ids = fl_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3, do_sample=True ) fl_model.to("cpu") generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = fl_processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) return modify_caption(parsed_answer[""]) def predict_tags_fl2_cog(image: Image.Image, input_tags: str, algo: list[str]): def to_list(s): return [x.strip() for x in s.split(",") if not s == ""] def list_uniq(l): return sorted(set(l), key=l.index) if not "Use CogFlorence-2.1-Large" in algo: return input_tags tag_list = list_uniq(to_list(input_tags) + to_list(process_image(image) + ", ")) tag_list.remove("") return ", ".join(tag_list)