Spaces:
Running
on
Zero
Running
on
Zero
Andre Embury
commited on
Change to a Tile Upscaler
Browse filesChanges a models to Tile upscaler.
- .tool-versions +1 -0
- README.md +6 -5
- __pycache__/app.cpython-313.pyc +0 -0
- app.py +220 -281
- requirements.txt +14 -12
.tool-versions
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python 3.13.1
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Tile Upscaler
|
3 |
+
emoji: 🚀
|
4 |
colorFrom: purple
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/app.cpython-313.pyc
ADDED
Binary file (6.97 kB). View file
|
|
app.py
CHANGED
@@ -1,294 +1,233 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
# import random
|
5 |
-
|
6 |
-
# import spaces #[uncomment to use ZeroGPU]
|
7 |
-
from diffusers import (
|
8 |
-
# StableDiffusionControlNetImg2ImgPipeline,
|
9 |
-
ControlNetModel,
|
10 |
-
ControlNetUnionModel,
|
11 |
-
StableDiffusionXLControlNetPipeline,
|
12 |
-
)
|
13 |
-
import torch
|
14 |
|
|
|
15 |
import requests
|
16 |
-
|
17 |
-
from PIL import Image
|
18 |
-
from controlnet_aux import CannyDetector
|
19 |
-
|
20 |
-
from diffusers import AutoencoderKL
|
21 |
-
from diffusers import (
|
22 |
-
EulerAncestralDiscreteScheduler,
|
23 |
-
StableDiffusionXLControlNetUnionPipeline,
|
24 |
-
)
|
25 |
-
import cv2
|
26 |
-
|
27 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
-
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
29 |
-
model_repo_id = "runwayml/stable-diffusion-v1-5"
|
30 |
-
|
31 |
-
if torch.cuda.is_available():
|
32 |
-
torch_dtype = torch.float16
|
33 |
-
else:
|
34 |
-
torch_dtype = torch.float32
|
35 |
-
|
36 |
-
# controlnet = ControlNetModel.from_pretrained(
|
37 |
-
# "lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32
|
38 |
-
# )
|
39 |
-
|
40 |
-
# controlnet = ControlNetModel.from_pretrained(
|
41 |
-
# "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
42 |
-
# )
|
43 |
-
|
44 |
-
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
45 |
-
# pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
46 |
-
# model_repo_id,
|
47 |
-
# controlnet=controlnet,
|
48 |
-
# torch_dtype=torch_dtype,
|
49 |
-
# ).to(device)
|
50 |
-
# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
51 |
-
# "stabilityai/stable-diffusion-xl-base-1.0",
|
52 |
-
# controlnet=controlnet,
|
53 |
-
# torch_dtype=torch.float16,
|
54 |
-
# variant="fp16",
|
55 |
-
# use_safetensors=True,
|
56 |
-
# ).to(device)
|
57 |
-
# # pipe = pipe.to(device)
|
58 |
-
# canny = CannyDetector()
|
59 |
-
|
60 |
-
|
61 |
-
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
|
62 |
-
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler"
|
63 |
-
)
|
64 |
-
|
65 |
-
# when test with other base model, you need to change the vae also.
|
66 |
-
vae = AutoencoderKL.from_pretrained(
|
67 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
68 |
-
)
|
69 |
-
|
70 |
-
controlnet_model = ControlNetUnionModel.from_pretrained(
|
71 |
-
"xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True
|
72 |
-
)
|
73 |
-
|
74 |
-
# controlnet_union_model = ControlNetUnionModel([controlnet_model])
|
75 |
-
|
76 |
-
pipe = StableDiffusionXLControlNetUnionPipeline.from_pretrained(
|
77 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
78 |
-
controlnet=controlnet_model,
|
79 |
-
vae=vae,
|
80 |
-
torch_dtype=torch.float16,
|
81 |
-
scheduler=eulera_scheduler,
|
82 |
-
control_mode=[0],
|
83 |
-
)
|
84 |
-
|
85 |
-
pipe = pipe.to(device)
|
86 |
-
|
87 |
-
|
88 |
-
MAX_SEED = np.iinfo(np.int32).max
|
89 |
-
MAX_IMAGE_SIZE = 1024
|
90 |
-
|
91 |
-
|
92 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
93 |
-
def infer(
|
94 |
-
image_url,
|
95 |
-
# negative_prompt,
|
96 |
-
# seed,
|
97 |
-
# randomize_seed,
|
98 |
-
width,
|
99 |
-
height,
|
100 |
-
guidance_scale,
|
101 |
-
num_inference_steps,
|
102 |
-
progress=gr.Progress(track_tqdm=True),
|
103 |
-
):
|
104 |
-
# if randomize_seed:
|
105 |
-
# seed = random.randint(0, MAX_SEED)
|
106 |
-
|
107 |
-
# generator = torch.Generator().manual_seed(seed)
|
108 |
-
|
109 |
-
# image = pipe(
|
110 |
-
# prompt=prompt,
|
111 |
-
# negative_prompt=negative_prompt,
|
112 |
-
# guidance_scale=guidance_scale,
|
113 |
-
# num_inference_steps=num_inference_steps,
|
114 |
-
# width=width,
|
115 |
-
# height=height,
|
116 |
-
# generator=generator,
|
117 |
-
# ).images[0]
|
118 |
-
|
119 |
-
# return image, seed
|
120 |
-
|
121 |
-
width = int(width)
|
122 |
-
height = int(height)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
resp.raise_for_status()
|
127 |
-
except Exception as e:
|
128 |
-
raise HTTPException(400, f"Could not download image: {e}")
|
129 |
|
130 |
-
|
131 |
-
img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
132 |
-
# img = img.resize((req.width, req.height))
|
133 |
-
# img = img.resize((width, height))
|
134 |
-
|
135 |
-
# control_net_image = canny(img).resize((width, height))
|
136 |
-
|
137 |
-
img_np = np.array(img)
|
138 |
-
|
139 |
-
controlnet_img = cv2.resize(img_np, (width, height))
|
140 |
-
|
141 |
-
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
142 |
-
controlnet_img = HWC3(controlnet_img)
|
143 |
-
controlnet_img = Image.fromarray(controlnet_img)
|
144 |
-
|
145 |
-
prompt = (
|
146 |
-
"redraw the logo from scratch, clean sharp vector-style, "
|
147 |
-
# + STYLE_PROMPTS[req.style_preset]
|
148 |
-
)
|
149 |
-
|
150 |
-
output = pipe(
|
151 |
-
prompt=prompt,
|
152 |
-
negative_prompt=NEGATIVE,
|
153 |
-
# image=img,
|
154 |
-
control_image=controlnet_img,
|
155 |
-
# strength=req.strength,
|
156 |
-
guidance_scale=guidance_scale,
|
157 |
-
num_inference_steps=num_inference_steps,
|
158 |
-
height=height,
|
159 |
-
width=width,
|
160 |
-
).images[0]
|
161 |
|
162 |
-
|
|
|
|
|
|
|
163 |
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
167 |
-
"An astronaut riding a green horse",
|
168 |
-
"A delicious ceviche cheesecake slice",
|
169 |
-
]
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
"""
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
with gr.Blocks(css=css) as demo:
|
203 |
-
with gr.Column(elem_id="col-container"):
|
204 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
205 |
-
|
206 |
-
with gr.Row():
|
207 |
-
image_url = gr.Text(
|
208 |
-
label="Image URL",
|
209 |
-
show_label=False,
|
210 |
-
# max_lines=1,
|
211 |
-
placeholder="Provide a image URL",
|
212 |
-
container=False,
|
213 |
-
)
|
214 |
-
|
215 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
216 |
-
|
217 |
-
result = gr.Image(label="Result", show_label=False)
|
218 |
-
|
219 |
-
with gr.Accordion("Advanced Settings", open=False):
|
220 |
-
negative_prompt = gr.Label(
|
221 |
-
label="Negative prompts",
|
222 |
-
# max_lines=1,
|
223 |
-
value=NEGATIVE,
|
224 |
-
visible=True,
|
225 |
-
)
|
226 |
-
|
227 |
-
# seed = gr.Slider(
|
228 |
-
# label="Seed",
|
229 |
-
# minimum=0,
|
230 |
-
# maximum=MAX_SEED,
|
231 |
-
# step=1,
|
232 |
-
# value=0,
|
233 |
-
# )
|
234 |
-
|
235 |
-
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
236 |
-
|
237 |
-
with gr.Row():
|
238 |
-
width = gr.Label(
|
239 |
-
label="Width",
|
240 |
-
value=WIDTH,
|
241 |
-
# minimum=256,
|
242 |
-
# maximum=MAX_IMAGE_SIZE,
|
243 |
-
# step=32,
|
244 |
-
# value=1024, # Replace with defaults that work for your model
|
245 |
-
)
|
246 |
-
|
247 |
-
height = gr.Label(
|
248 |
-
label="Height",
|
249 |
-
value=HEIGHT,
|
250 |
-
# minimum=256,
|
251 |
-
# maximum=MAX_IMAGE_SIZE,
|
252 |
-
# step=32,
|
253 |
-
# value=1024, # Replace with defaults that work for your model
|
254 |
-
)
|
255 |
-
|
256 |
-
with gr.Row():
|
257 |
-
guidance_scale = gr.Slider(
|
258 |
-
label="Guidance scale",
|
259 |
-
minimum=0.0,
|
260 |
-
maximum=10.0,
|
261 |
-
step=0.1,
|
262 |
-
value=8.5, # Replace with defaults that work for your model
|
263 |
-
)
|
264 |
-
|
265 |
-
num_inference_steps = gr.Slider(
|
266 |
-
label="Number of inference steps",
|
267 |
-
minimum=1,
|
268 |
-
maximum=50,
|
269 |
-
step=1,
|
270 |
-
value=25, # Replace with defaults that work for your model
|
271 |
-
)
|
272 |
-
|
273 |
-
# gr.Examples(examples=examples, inputs=[prompt])
|
274 |
-
gr.on(
|
275 |
-
triggers=[run_button.click, image_url.submit],
|
276 |
-
fn=infer,
|
277 |
-
inputs=[
|
278 |
-
image_url,
|
279 |
-
# negative_prompt,
|
280 |
-
# seed,
|
281 |
-
# randomize_seed,
|
282 |
-
width,
|
283 |
-
height,
|
284 |
-
guidance_scale,
|
285 |
-
num_inference_steps,
|
286 |
-
],
|
287 |
-
outputs=[
|
288 |
-
result,
|
289 |
-
# seed,
|
290 |
],
|
|
|
|
|
|
|
|
|
291 |
)
|
292 |
|
293 |
-
|
294 |
-
demo.launch()
|
|
|
1 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import os
|
4 |
import requests
|
5 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
import subprocess
|
8 |
+
subprocess.run("pip install git+https://github.com/inference-sh/Real-ESRGAN.git --no-deps", shell=True)
|
|
|
|
|
|
|
9 |
|
10 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
14 |
+
from diffusers.models import AutoencoderKL
|
15 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
16 |
|
17 |
+
from PIL import Image
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
|
21 |
+
from RealESRGAN import RealESRGAN
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
import gradio as gr
|
24 |
+
from gradio_imageslider import ImageSlider
|
25 |
+
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
|
28 |
+
USE_TORCH_COMPILE = False
|
29 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
30 |
+
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
|
33 |
+
def download_models():
|
34 |
+
models = {
|
35 |
+
"MODEL": ("dantea1118/juggernaut_reborn", "juggernaut_reborn.safetensors", "models/models/Stable-diffusion"),
|
36 |
+
"UPSCALER_X2": ("ai-forever/Real-ESRGAN", "RealESRGAN_x2.pth", "models/upscalers/"),
|
37 |
+
"UPSCALER_X4": ("ai-forever/Real-ESRGAN", "RealESRGAN_x4.pth", "models/upscalers/"),
|
38 |
+
"NEGATIVE_1": ("philz1337x/embeddings", "verybadimagenegative_v1.3.pt", "models/embeddings"),
|
39 |
+
"NEGATIVE_2": ("philz1337x/embeddings", "JuggernautNegative-neg.pt", "models/embeddings"),
|
40 |
+
"LORA_1": ("philz1337x/loras", "SDXLrender_v2.0.safetensors", "models/Lora"),
|
41 |
+
"LORA_2": ("philz1337x/loras", "more_details.safetensors", "models/Lora"),
|
42 |
+
"CONTROLNET": ("lllyasviel/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet"),
|
43 |
+
"VAE": ("stabilityai/sd-vae-ft-mse-original", "vae-ft-mse-840000-ema-pruned.safetensors", "models/VAE"),
|
44 |
+
}
|
45 |
+
|
46 |
+
for model, (repo_id, filename, local_dir) in models.items():
|
47 |
+
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
|
48 |
+
|
49 |
+
download_models()
|
50 |
+
|
51 |
+
def timer_func(func):
|
52 |
+
def wrapper(*args, **kwargs):
|
53 |
+
start_time = time.time()
|
54 |
+
result = func(*args, **kwargs)
|
55 |
+
end_time = time.time()
|
56 |
+
print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
|
57 |
+
return result
|
58 |
+
return wrapper
|
59 |
+
|
60 |
+
class LazyLoadPipeline:
|
61 |
+
def __init__(self):
|
62 |
+
self.pipe = None
|
63 |
+
|
64 |
+
@timer_func
|
65 |
+
def load(self):
|
66 |
+
if self.pipe is None:
|
67 |
+
print("Starting to load the pipeline...")
|
68 |
+
self.pipe = self.setup_pipeline()
|
69 |
+
print(f"Moving pipeline to device: {device}")
|
70 |
+
self.pipe.to(device)
|
71 |
+
if USE_TORCH_COMPILE:
|
72 |
+
print("Compiling the model...")
|
73 |
+
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
74 |
+
|
75 |
+
@timer_func
|
76 |
+
def setup_pipeline(self):
|
77 |
+
print("Setting up the pipeline...")
|
78 |
+
controlnet = ControlNetModel.from_single_file(
|
79 |
+
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
80 |
+
)
|
81 |
+
# safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
82 |
+
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
|
83 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
|
84 |
+
model_path,
|
85 |
+
controlnet=controlnet,
|
86 |
+
torch_dtype=torch.float16,
|
87 |
+
use_safetensors=True,
|
88 |
+
# safety_checker=safety_checker
|
89 |
+
)
|
90 |
+
vae = AutoencoderKL.from_single_file(
|
91 |
+
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
|
92 |
+
torch_dtype=torch.float16
|
93 |
+
)
|
94 |
+
pipe.vae = vae
|
95 |
+
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
96 |
+
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
97 |
+
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
98 |
+
pipe.fuse_lora(lora_scale=0.5)
|
99 |
+
pipe.load_lora_weights("models/Lora/more_details.safetensors")
|
100 |
+
pipe.fuse_lora(lora_scale=1.)
|
101 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
102 |
+
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
103 |
+
return pipe
|
104 |
+
|
105 |
+
def __call__(self, *args, **kwargs):
|
106 |
+
return self.pipe(*args, **kwargs)
|
107 |
+
|
108 |
+
class LazyRealESRGAN:
|
109 |
+
def __init__(self, device, scale):
|
110 |
+
self.device = device
|
111 |
+
self.scale = scale
|
112 |
+
self.model = None
|
113 |
+
|
114 |
+
def load_model(self):
|
115 |
+
if self.model is None:
|
116 |
+
self.model = RealESRGAN(self.device, scale=self.scale)
|
117 |
+
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
|
118 |
+
def predict(self, img):
|
119 |
+
self.load_model()
|
120 |
+
return self.model.predict(img)
|
121 |
+
|
122 |
+
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
|
123 |
+
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
|
124 |
+
|
125 |
+
@timer_func
|
126 |
+
def resize_and_upscale(input_image, resolution):
|
127 |
+
scale = 2 if resolution <= 2048 else 4
|
128 |
+
input_image = input_image.convert("RGB")
|
129 |
+
W, H = input_image.size
|
130 |
+
k = float(resolution) / min(H, W)
|
131 |
+
H = int(round(H * k / 64.0)) * 64
|
132 |
+
W = int(round(W * k / 64.0)) * 64
|
133 |
+
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
134 |
+
if scale == 2:
|
135 |
+
img = lazy_realesrgan_x2.predict(img)
|
136 |
+
else:
|
137 |
+
img = lazy_realesrgan_x4.predict(img)
|
138 |
+
return img
|
139 |
+
|
140 |
+
@timer_func
|
141 |
+
def create_hdr_effect(original_image, hdr):
|
142 |
+
if hdr == 0:
|
143 |
+
return original_image
|
144 |
+
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
|
145 |
+
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
|
146 |
+
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
|
147 |
+
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
|
148 |
+
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
|
149 |
+
merge_mertens = cv2.createMergeMertens()
|
150 |
+
hdr_image = merge_mertens.process(images)
|
151 |
+
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
152 |
+
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
153 |
+
|
154 |
+
lazy_pipe = LazyLoadPipeline()
|
155 |
+
lazy_pipe.load()
|
156 |
+
|
157 |
+
def prepare_image(input_image, resolution, hdr):
|
158 |
+
condition_image = resize_and_upscale(input_image, resolution)
|
159 |
+
condition_image = create_hdr_effect(condition_image, hdr)
|
160 |
+
return condition_image
|
161 |
+
|
162 |
+
@spaces.GPU
|
163 |
+
@timer_func
|
164 |
+
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
165 |
+
print("Starting image processing...")
|
166 |
+
torch.cuda.empty_cache()
|
167 |
+
|
168 |
+
condition_image = prepare_image(input_image, resolution, hdr)
|
169 |
+
|
170 |
+
prompt = "masterpiece, best quality, highres"
|
171 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
172 |
+
|
173 |
+
options = {
|
174 |
+
"prompt": prompt,
|
175 |
+
"negative_prompt": negative_prompt,
|
176 |
+
"image": condition_image,
|
177 |
+
"control_image": condition_image,
|
178 |
+
"width": condition_image.size[0],
|
179 |
+
"height": condition_image.size[1],
|
180 |
+
"strength": strength,
|
181 |
+
"num_inference_steps": num_inference_steps,
|
182 |
+
"guidance_scale": guidance_scale,
|
183 |
+
"generator": torch.Generator(device=device).manual_seed(0),
|
184 |
+
}
|
185 |
+
|
186 |
+
print("Running inference...")
|
187 |
+
result = lazy_pipe(**options).images[0]
|
188 |
+
print("Image processing completed successfully")
|
189 |
+
|
190 |
+
# Convert input_image and result to numpy arrays
|
191 |
+
input_array = np.array(input_image)
|
192 |
+
result_array = np.array(result)
|
193 |
+
|
194 |
+
return [input_array, result_array]
|
195 |
+
|
196 |
+
title = """<h1 align="center">Image Upscaler with Tile Controlnet</h1>
|
197 |
+
<p align="center">The main ideas come from</p>
|
198 |
+
<p><center>
|
199 |
+
<a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
|
200 |
+
<a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[Pau-Lozano]</a>
|
201 |
+
</center></p>
|
202 |
"""
|
203 |
|
204 |
+
with gr.Blocks() as demo:
|
205 |
+
gr.HTML(title)
|
206 |
+
with gr.Row():
|
207 |
+
with gr.Column():
|
208 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
209 |
+
run_button = gr.Button("Enhance Image")
|
210 |
+
with gr.Column():
|
211 |
+
output_slider = ImageSlider(label="Before / After", type="numpy")
|
212 |
+
with gr.Accordion("Advanced Options", open=False):
|
213 |
+
resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
|
214 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
|
215 |
+
strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
|
216 |
+
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
|
217 |
+
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|
218 |
+
|
219 |
+
run_button.click(fn=gradio_process_image,
|
220 |
+
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
|
221 |
+
outputs=output_slider)
|
222 |
+
|
223 |
+
# Add examples with all required inputs
|
224 |
+
gr.Examples(
|
225 |
+
examples=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
],
|
227 |
+
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
|
228 |
+
outputs=output_slider,
|
229 |
+
fn=gradio_process_image,
|
230 |
+
cache_examples=True,
|
231 |
)
|
232 |
|
233 |
+
demo.launch(share=True)
|
|
requirements.txt
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
-
|
|
|
2 |
diffusers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
gradio
|
|
|
|
1 |
+
opencv-python
|
2 |
+
spaces
|
3 |
diffusers
|
4 |
+
torch==2.4.0
|
5 |
+
torchvision
|
6 |
+
pipeline
|
7 |
+
transformers<=4.49.0
|
8 |
+
accelerate
|
9 |
+
safetensors
|
10 |
+
spaces
|
11 |
+
peft
|
12 |
+
gradio
|
13 |
+
pillow
|
14 |
+
gradio-imageslider
|
15 |
+
pydantic==2.10.6
|